
SortalGI	plug-in	for	Grasshopper	
User manual 

SortalGI	version	1.7	
Manual	update	February	2022	
Wri<en	by	Rudi	Stouffs	

Table of content 
1. About the SortalGI plug-in  2

2. Installa=on and update  3

3. Common terms  5

4. Data types  8

5. Star=ng on a SortalGI-based parametric model  12

6. Crea=ng a shape  14

7. Manipula=ng a shape  18

8. Crea=ng a rule  21

9. Applying a rule  25

10. Crea=ng and applying flows (composite rules)  29

11. Specifying shape descrip=ons  35

12. Specifying predicates  45

13. Specifying direc=ves  49

Appendix A. A formal nota=on for shape descrip=ons  52

Appendix B. Descrip=on func=ons  57

Appendix C: A formal nota=on for flow descrip=ons  60

Appendix D: FAQ 64

	1



1. About the SortalGI plug-in 

A	shape	rule	combines	a	specificaDon	of	recogniDon	and	manipulaDon	(search	and	replace).	
A	shape	rule	is	commonly	specified	in	the	form	lhs	→	rhs,	where	the	leK-hand-side	(lhs)	of	
the	rule	specifies	the	pa<ern	to	be	recognized	and	the	manipulaDon	of	the	current	shape	
then	involves	replacing	the	recognized	lhs	by	the	right-hand-side	(rhs)	of	the	shape	rule	in	
the	shape	under	invesDgaDon.	RecogniDon	necessarily	applies	under	some	transformaDon,	
for	example,	a	similarity	transformaDon,	and	the	resulDng	manipulaDon	must	occur	under	
the	same	transformaDon	for	both	lhs	and	rhs.	That	is,	applying	a	rule	a	→	b	to	a	given	shape	
s	involves	determining	a	transformaDon	f	such	that	f(a)	is	a	part	of	s	(f(a)	≤	s),	following	
which	s	is	replaced	by	s	–	f(a)	+	f(b).	

A	shape	grammar	generally	defines	a	collecDon	of	rules	together	with	an	iniDal	shape;	then,	
the	language	defined	by	a	shape	grammar	is	the	set	of	shapes	generated	by	the	rules	from	
the	iniDal	shape.	However,	from	a	user’s	point	of	view,	any	collecDon	of	rules	that	serves	a	
parDcular	purpose	can	be	considered	a	shape	grammar,	whether	or	not	it	requires	a	
parDcular	iniDal	shape	or,	instead,	can	be	applied	to	a	wide	variety	of	(iniDal)	shapes.	

Sortal	grammars	extend	on	shape	grammars.	Where	shape	grammars	commonly	rely	on	a	
combinaDon	of	line	segments	and	labelled	points,	sortal	grammars	take	a	modular	
representaDonal	approach,	allowing	for	a	wide	variety	of	geometric	and	non-geometric	
elements	to	be	included	in	the	specificaDon	of	shape	rules	and	grammars.	Sortal	grammars	
uDlize	sortal	structures	as	representaDonal	structures,	where	these	structures	are	defined	as	
formal	composiDons	of	other,	primiDve,	sortal	structures,	termed	sorts.	As	such,	sortal	
grammars	consDtute	a	class	of	formalisms	for	design	grammars	and	benefit	from	the	fact	
that	every	component	sort	specifies	a	parDal	order	relaDonship	on	its	individuals	and	forms,	
defining	both	the	matching	operaDon	and	the	arithmeDc	operaDons	for	rule	applicaDon.	

A	shape	grammar	interpreter	is	the	engine	that	supports	the	applicaDon	of	shape	rules,	
including	recogniDon	and	manipulaDon	(search	and	replace).	The	SortalGI	plug-in	for	
Grasshopper	encapsulates	the	SortalGI	sortal/shape	grammar	interpreter	and	makes	part	of	
its	funcDonality	available	within	Rhino/Grasshopper.	It	allows	the	user	to	create	and	apply	
shape	and	descripDon	rules	within	the	Grasshopper	environment.	The	SortalGI	interpreter	
supports	emergence,	that	is,	subshape	recogniDon	is	unrestricted	by	how	a	shape	has	been	
drawn	or	structured.	

Plug-in	development	by	Bianchi	Dy	and	Rudi	Stouffs	
System	development	by	Bui	Do	Phuong	Tung	and	Rudi	Stouffs	
Research	and	development	led	by	Rudi	Stouffs	

	2



2. Installa=on and update 
InstallaDon	applies	to	both	Windows	and	Mac	(Rhino	6	and	Rhino	7	only).		

InstallaDon	takes	two	main	steps.	Firstly,	install	the	SortalGI	library	in	a	place	where	Rhino	
can	find	it;	this	is	required	for	every	major	update	(e.g.,	from	v1.6.0	to	v1.7.0).	Secondly,	
install	the	SortalGI	plug-in	(user	objects)	for	Grasshopper;	this	is	always	required,	also	in	the	
case	of	a	minor	update	(e.g.,	from	v1.7.0	to	v1.7.1).	

If	you	have	not	yet	done	so,	download	the	latest	SortalGI	update	from	Food4Rhino	(h<p://
www.food4rhino.com/app/sortalgi-shape-grammar-interpreter)	or	sortal.org	(h<p://
www.sortal.org/downloads/plugin.html)	and	unzip	the	file.	

Step 1 [Windows]: Installing the SortalGI library 
This	step	applies	to	iniDal	installaDon	as	well	as—to	some	extent—every	major	update	(e.g.,	
from	v1.6.0	to	v1.7.0).	
There	are	generally	two	locaDons	where	Rhino	expects	the	SortalGI	library	to	be	installed,	
either:	

− C:\Users\me\AppData\Roaming\McNeel\Rhinoceros\6.0\scripts	or	equivalent	on	
your	computer	

− C:\Program	Files\Rhino	6\Plug-ins\IronPython\Lib	or	equivalent	on	your	computer	
You	can	idenDfy	both	locaDons	from	Rhino’s	'Module	Search	Paths'	dialog:	

a) Open	Rhino	
b) Type	EditPythonScript	in	the	Rhino	Command	box	
c) In	the	Rhino	Python	Editor	window,	select	'OpDons...'	from	the	Tools	menu	
d) Note	the	available	'Module	Search	Paths'	

If	you’d	like,	you	can	choose	any	other	locaDon	and	add	it	to	the	'Module	Search	Paths'	
The	following	steps	install	the	SortalGI	library	and	make	it	accessible	to	Rhino:	

e) Copy-paste	the	content	of	the	folder	‘lib’	(the	subfolders	‘sortal’	and	‘site-packages’)	
into	the	preferred	locaDon	

f) Add	the	locaDon	of	the	site-packages	subfolder	(e.g.,	C:\Program	Files\Rhino	6\Plug-
ins\IronPython\Lib\site-packages)	into	the	'Module	Search	Paths'	

g) Switch	from	the	‘Files’	tab	to	the	‘Script	Engine’	tab	(in	the	Python	OpDons	window).	
h) Check	the	‘Frames	Enabled’	opDon	and	click	‘OK’	

Only	the	installaDon	of	the	‘sortal’	subfolder—replacing	it	with	the	newer	version—needs	to	
be	repeated	for	every	major	update.	
Note:	
i. Installing	the	SortalGI	library	in	IronPython\Lib	will	make	the	library	available	for	all	

users	but	requires	administrator	access	
ii. A	‘site-packages’	folder	may	already	exist	in	IronPython\Lib,	it	suffices	to	add	the	

content	of	‘site-packages’	to	this	folder.	It	remains	important	to	add	this	subfolder	
into	the	'Module	Search	Paths'	if	not	already	done	so.	

iii. If	different	versions	of	the	SortalGI	library	are	installed	in	different	locaDons,	the	
ordering	of	the	respecDve	parent	folders	in	the	'Module	Search	Paths'	will	define	
which	version	is	being	used	

Step 1 [Mac]: Installing the SortalGI library 
This	step	applies	to	iniDal	installaDon	as	well	as—to	some	extent—every	major	update	(e.g.,	
from	v1.6.0	to	v1.7.0).	

	3

http://www.food4rhino.com/app/sortalgi-shape-grammar-interpreter
http://www.food4rhino.com/app/sortalgi-shape-grammar-interpreter
http://www.sortal.org/downloads/plugin.html
http://www.sortal.org/downloads/plugin.html


Copy-paste	the	content	of	the	folder	‘lib’	(the	subfolders	‘sortal’	and	‘site-packages’)	into	the	
locaDon	Macintosh	HD/Users/me/Library/ApplicaDon	Support/McNeel/Rhinoceros/6.0/
scripts	or	equivalent	on	your	computer.	Unpack	‘site-packages’	by	moving	its	content	to	the	
‘scripts’	folder.	
Only	the	installaDon	of	the	‘sortal’	subfolder—replacing	it	with	the	newer	version—needs	to	
be	repeated	for	every	major	update.	
Note:	
i. The	folder	Library	may	not	be	visible.	If	so,	select	your	home	directory	in	the	finder,	

choose	“Show	view	opDons”	from	the	View	menu	and	check	“Show	Library	Folder”	

Step 2 [Windows/Mac]: Installing the SortalGI plug-in 
This	step	applies	to	iniDal	installaDon	and	every	(minor	or	major)	update.	

a) Open	Rhino	and	Grasshopper.	
b) In	Grasshopper,	choose	File	>	Special	Folders	>	User	Object	folder.	
c) Copy-paste	the	content	of	the	folder	‘user	objects’	into	this	'User	Object'	folder	

(replacing	any	files	with	the	same	name,	if	already	present).	
The	result	should	be	automaDcally	reflected	in	Grasshopper.	There	should	be	an	‘SGI’	tab	in	
the	Grasshopper	Components	Tab	Panel	and	if	you	select	the	tab	it	should	include	all	the	
User	Objects	(see	below).	If	not,	you	may	want	to	restart	Grasshopper	and	Rhino	for	the	
changes	to	take	effect.	
Note:	
i. You	can	also	use	the	SGI Update	component	to	update	the	SortalGI	components	in	

the	Grasshopper	Components	Tab	Panel	as	well	as	in	the	current	parametric	model	
(see	secDon 5. Star=ng on a SortalGI-based parametric model).	
Do	note	that	compa4bility	between	the	components	of	v1.5.0	with	respect	to	previous	
versions	is	rather	poor,	due	to	the	fact	that	input	and	output	parameters,	both	in	
terms	of	the	number	of	parameters	and	types	of	the	parameters,	have	changed	quite	
a	bit.	Unfortunately,	using	SGI Update	cannot	resolve	all	these	changes	automa4cally.	

	

	4



3. Common terms 

The	following	object	classes	are	defined	to	exchange	informaDon	between	SortalGI	
components	in	Grasshopper:	

Shape (also denoted lhShape, rhShape, subShape, Shape1 or Shape2) 
A	Shape	object	contains	the	shape’s	representaDon	as	used	by	the	SortalGI	engine,	together	
with	the	corresponding	GH	geometry	(see	secDon	6. Crea=ng a shape).	

Rule (also denoted pRule) 
A	Rule	object	contains	the	rule’s	representaDon	as	composed	of	a	leK-hand-side	Shape	object	
and	a	right-hand-side	Shape	object,	an	idenDfier	Name,	an	opDonal	descripDon,	and,	
possibly,	one	or	more	Predicates	and/or	Directives	(see	secDon	8. Crea=ng a rule).	Note	that	
in	a	limited	number	of	cases,	the	term	Rules	is	used	to	allow	for	both	Rule	objects	and	Flow	
objects.	

Flow 
A	Flow	object	contains	the	flow’s	representaDon	as	composed	of	an	R	(flow	structure)	object,	
an	idenDfier	Name,	and	an	opDonal	descripDon	(see	secDon	10. Crea=ng and applying flows 
(composite rules)).	Note	that	in	some	cases,	the	term	Flow	is	used	to	allow	for	either	a	Flow	
object	or	an	R	(flow	structure)	object.	

R (also denoted sequenceR, disjunc=onR or nega=onR) 
R	is	used	as	a	container	term	allowing	for	either	a	Rule	object,	a	Flow	object	or	an	R	(flow	
structure)		object,	where	the	la<er	underlies	a	Flow	object,	omirng	the	Name	and	
descripDon.	However,	the	terms	sequenceR,	disjunctionR	and	negationR	only	refer	to	an	R	
(flow	structure)	object.	

In	addiDon,	the	following	terms	are	adopted	to	denote	various	informaDon	types:	

Name (also denoted ruleName or flowName) 
The	name	of	a	rule	or	flow	must	be	a	unique	idenDfier,	consisDng	only	of	le<ers,	digits	and/
or	underscores	and	always	starDng	with	a	le<er	or	underscore.	

Type (also denoted descrip=onType or sType) 
The	term	descriptionType	or	Type	is	used	to	denote	a	descripDon	type	name.	DescripDon	
types	must	be	predefined	before	they	can	be	used	in	the	creaDon	of	a	(descripDon)	shape.	
DescripDon	type	names	must	be	idenDfiers,	consisDng	only	of	le<ers,	digits	and/or	
underscores	and	always	starDng	with	a	le<er	or	underscore.	The	term	sType	is	a	container	
term	allowing	for	either	a	descriptionType	or	a	spatialType,	the	la<er	being	a	fixed	
enumeraDon	(see	below).	

Descrip=on (also denoted labelD, D, referenceD, auxRefD, condi=onD, tupleD, func=onD, 
expressionD, propertyD, direc=onD, lengthD, distanceD, valueD, angleD) 
The	term	Description	or	labelD	is	used	to	denote	a	textual	(shape)	descripDon,	as	
disDnguished	from	a	spaDal	(shape)	descripDon	(i.e.,	spaDal	elements)	(see	secDon	11. 
Specifying shape descrip=ons).	While	a	shape	descripDon	is	inherently	textual,	it	can	also	be	
specified	as	a	numeric	value	or	a	vector.	A	shape	descripDon	can	also	be	composed	as	an	

	5



expression	or	tuple	from	other	descripDons	or	descripDon	parts.	The	term	D	is	generally	
used	to	denote	any	descripDon	or	part	thereof.	There	are	many	different	kinds	of	
descripDons,	which	is	reflected	in	the	many	variant	terms.	

Tag (also denoted lineTag or refTag) 
A	tag	is	a	label	specified	to	a	spaDal	element	in	order	to	idenDfy	it	within	a	corresponding	
descripDon	during	rule	applicaDon.	A	tag	is	formed	by	an	idenDfier—consisDng	only	of	
le<ers,	digits	and/or	underscores	and	always	starDng	with	a	le<er	or	underscore—preceded	
by	a	‘#’.	Any	spaDal	element	can	be	assigned	a	tag,	but	the	term	lineTag	is	only	used	to	
denote	the	tag	of	a	line	segment.	

Predicate 
A	predicate	is	a	forma<ed	textual	specificaDon	expressing	a	special	condiDon	on	the	
applicaDon	of	a	rule	(see	secDon	12. Specifying predicates).	

Direc=ve 
A	direcDve	is	a	forma<ed	textual	specificaDon	expressing	a	value	that	is	required	for	the	
unambiguous	execuDon	of	the	manipulaDon/replacement	part	of	a	parametric-associaDve	
rule	applicaDon	(see	secDon	13. Specifying direc=ves).	

Finally,	the	following	terms	each	reference	a	predefined	enumeraDon	of	(textual)	values:	

colorMode 
Any	spaDal	element	can	have	a	color	a<ribute	assigned	conforming	to	one	of	the	predefined	
and	preselected	color	modes:	‘graytone’,	‘opaque’,	‘maxRGB’	(maximum	RGB	values),	
‘sumRGB’	(sum	of	RGB	values),	‘avgRGB’	(average	RGB	values),	‘alphaRGB’	(alpha	blending).	
Note	that	‘graytone’,	next	to	being	limited	to	grayscales,	is	the	only	color	mode	where	black,	
rather	than	white,	specifies	the	highest	value	(see	secDon	4. Data types).	

spa=alType 
The	spaDal	element	types	that	the	SortalGI	plug-in	currently	supports	are	‘point’,	‘line	
segment’,	‘plane	segment’,	‘circle’,	‘ellipse’,	‘circular	arc’	and	‘quadraDc	Bezier’	(see	secDon	4. 
Data types).	

a_type 
The	non-spaDal	a<ribute	types	that	the	SortalGI	plug-in	currently	supports	are	‘labelD,	‘color’	
and	line	‘thickness’	(see	secDon	4. Data types).	

Op 
Within	a	shape	descripDon,	two	kinds	of	operators	can	be	used.	Numerical	expressions	allow	
for	the	operators	‘+’	(addiDon),	‘–’	(subtracDon),	‘*’	(mulDplicaDon),	‘/’	(division),	
‘%’	(modulo	operaDon)	and	‘^’	(exponenDaDon).	CondiDonal	expressions	allow	for	‘=’	(equal),	
‘<>’	(not	equal),	‘<’	(less	than),	‘>’	(greater	than),	‘<=’	(less	than	or	equal),	‘>=’	(greater	than	
or	equal),	‘[]’	(within	range)	and	‘{}]	(one	of).	

	6



Func=on 
Within	a	shape	descripDon,	funcDons	allow	for	addiDonal	operaDons	on	numbers,	texts/
strings	and	tuples,	or	a	combinaDon	thereof	(see	Func=ons in	secDon	11. Specifying shape 
descrip=ons).	

Marking 
Within	a	shape	descripDon,	tuple	markings	are	either	parentheses,	angle	brackets	or	square	
brackets,	to	enclose	the	tuple,	and	commas	or	semicolons,	as	separators	(either	‘(,)’,	‘<,>’,	
‘[,]’,	‘(;)’,	‘<;>’,	‘[;]’).	AlternaDvely,	the	enclosing	marks	can	be	omi<ed	with	spaces	as	
separators	(‘’).	

Matching 
Flows	support	four	different	matching	approaches:	‘greedy’,	‘possessive’,	‘lazy’	and	
‘probabilisDc’	(see	secDon	10. Crea=ng and applying flows (composite rules)).	

Quan=fier 
A	flow	or	flow	structure	can	be	iterated	conform	a	specified	quanDfier.	Aside	from	the	
predefined	values	‘?’	(zero	or	once),	‘*’	(zero,	once	or	more	Dmes)	and	‘+’	(once	or	more	
Dmes),	the	quanDfier	can	also	be	composed	from	a	minimum	and,	opDonally,	maximum	
value	as	in	the	forms	‘{min}’,	‘{min,}’	and	‘{min,	max}’.	

	7



4. Data types 

Shapes	are	generally	composed	of	spaDal	elements.	These	spaDal	elements	may	have	non-
spaDal	a<ributes.	Shapes	may	also	include	(textual)	shape	descripDons;	in	fact,	a	shape	can	
be	made	up	of	only	descripDons,	only	spaDal	elements,	or	a	combinaDon	thereof.	An	empty	
shape	is	also	allowed,	although	the	leK-hand-side	shape	of	a	rule	(or	lhShape)	can	never	be	
empty.	

Spa=al element types 
The	SortalGI	engine	currently	supports	the	following	spaDal	element	types:	points,	line	
segments,	plane	segments,	circles,	ellipses,	circular	arcs	and	quadraDc	Bezier	curves.	These	
can	be	created	as	geometries	in	Rhino	or	Grasshopper	and	converted	into	shape	elements	
using	the	SGI Shape	or	SGI dShape	components	(see	secDon	6. Crea=ng a shape).	Note	that	
circular	arcs	are	not	yet	available	within	parametric-associaDve	rules	and,	if	specified,	will	be	
ignored.	

Each	spaDal	element	type	defines	a	sortal	structure	(or	sort).	It	may	be	necessary	to	refer	to	
a	sortal	structure	by	its	name	in	order	to	idenDfy	a	spaDal	element	within	a	descripDon.	Note	
that	sortal	structures	are	different	for	non-parametric	rules	and	parametric-associaDve	rules	
(pRule).	The	former	names	end	with	‘3D’,	the	la<er	names	with	‘P3D’.	Sortal	structures	
corresponding	to	different	spaDal	element	types	are	combined	under	the	operaDon	of	sum	
on	sortal	structures.	The	result	is	a	composite	sortal	structure,	e.g.,	curve3D = circle3D + 
ellipse3D + arc3D + bezier3D.	

SGI All Spa=al Types 

The	SGI All Spatial Types component	provides	a	list	of	all	spatialTypes	as	may	be	present	in	
shapes:	‘point’,	‘line	segment’,	‘plane	segment’,	‘circle’,	‘ellipse’,	‘circular	arc’	and	’quadraDc	
Bezier’.	

spa4al	element	type sortal	structure

non-parametric	rules parametric-associa4ve	rules

points point3D pointP3D

line	segments lineSeg3D lineSegP3D

plane	segments planeSeg3D planesegP3D

circles circle3D circleP3D

ellipses ellipse3D ellipseP3D

circular	arcs arc3D -

quadraDc	Bezier	curves bezier3D bezierP3D

	8



SGI Spa=al Types 

The	SGI Spatial Types selector	allows	to	select	from	a	list	of	spatialTypes	as	may	be	present	in	
shapes:	‘point’,	‘line	segment’,	‘plane	segment’,	‘circle’,	‘ellipse’,	‘circular	arc’	and	’quadraDc	
Bezier’.	

Non-spa=al a_ribute types 
The	SortalGI	engine	supports	three	non-spaDal	a<ribute	types:	descripDons	(or	labels),	colors	
(or	grayscales)	and	line	thicknesses.	

DescripDons	are	textual,	in	nature,	and	follow	a	strict	format	that	allows	them	to	be	
interpreted	and	matched	by	the	SortalGI	engine.	This	format	allows	for	quoted	strings	(e.g.,	
labels),	numbers,	vectors,	tuples	thereof,	etc.).	DescripDons	that	form	part	of	the	leK-hand-
side	or	right-hand-side	of	a	rule	may	include	parameters,	expressions	and	references	to	other	
descripDons	or	to	spaDal	elements	(see	secDon	11. Specifying shape descrip=ons).	

Colors	can	be	grayscale	values	or	RGB	values,	depending	on	the	selected	color	mode.	The	
SortalGI	engine	disDnguishes	six	color	modes:	

There	are	two	ways	to	assign	a	color	a<ribute	to	a	spaDal	element.	Firstly,	the	desired	color	
can	be	specified	directly	to	the	original	geometry	in	Rhino,	using	‘Custom’	(instead	of	‘by	
Layer’	or	‘by	Parent’).	‘Custom’	color	specificaDons	will	be	automaDcally	retrieved	when	
converDng	the	geometry	into	a	shape	and	assigned	as	a	color	a<ribute	to	the	respecDve	
spaDal	element.	Secondly,	the	SGI Attributed Shape	component	(see	secDon	6. Crea=ng a 
shape)	can	be	used	to	assign	a	color	to	a	spaDal	element	when	creaDng	the	shape.	Note	that	
there	is	no	color	a<ribute	specified	for	points.	

The	sortal	structure	for	descripDons	and	colors	is	different	for	each	spaDal	element	type,	so	
as	to	be	able	to	reference	these	unambiguously	in	a	descripDon.	The	sortal	structure	
corresponding	to	a	spaDal	element	type	is	augmented	with	the	sortal	structures	of	the	
respecDve	a<ribute	types	under	the	operaDon	of	a<ribuDon	on	sortal	structures.	The	result	

color	mode explana4on

graytone grayscale	values	between	0	(white)	and	255	(black);	the	sum	of	two	grayscale	
values	is	the	maximum	of	both	values.	Note	that	this	is	the	only	color	mode	where	
the	maximum	value	represents	black,	rather	than	white

opaque RGB	color	values;	the	sum	of	two	color	values	is	always	the	second	value

maxRGB RGB	color	values;	the	sum	of	two	color	values	has	as	RGB	values	the	maximum	
values	from	both	colors

sumRGB RGB	color	values;	the	sum	of	two	color	values	has	as	RGB	values	the	sum	of	the	
respecDve	RGB	values	from	both	colors

avgRGB RGB	color	values;	the	sum	of	two	color	values	has	as	RGB	values	the	average	of	
the	respecDve	RGB	values	from	both	colors

alphaRGB RGB	color	values	and	alpha	value;	the	sum	of	two	color	values	is	dependent	on	
their	respecDve	alpha	values

	9



is	a	composite	sortal	structure,	e.g.,	attrCircle3D = circle3D ^ (cColor + cLabelD + 
cThickness).	

Note	that	descripDons	may	also	occur	as	color	a<ribute	(but	not	yet	as	line	thickness	
a<ribute)	within	a	rule,	in	order	to	retrieve	or	assign	color	values	within	the	rule	(see	secDon	
6. Crea=ng a shape).	However,	this	is	not	(yet)	applicable	to	the	‘graytone’	colorMode.	

SGI A_ribute Types 

The	SGI Attribute Types component	provides	a	list	of	all	attribute types	that	may	be	present	
as	non-spaDal	a<ributes	in	shapes:	‘labelD’,	‘color’	and	‘thickness’.	

SGI All Color Modes 

The	SGI All Color Modes component	provides	a	list	of	all	colorModes	that	may	apply	to	color	
a<ributes:	‘graytone’,	‘opaque’,	‘maxRGB’,	‘sumRGB’,	‘avgRGB’	and	‘alphaRGB’.	

SGI Color Modes 

The	SGI Color Modes selector	allows	to	select	from	a	list	of	colorModes	that	may	apply	to	
color	a<ributes:	‘graytone’,	‘opaque’,	‘maxRGB’,	‘sumRGB’,	‘avgRGB’	and	‘alphaRGB’.	

Descrip=on types 
DescripDons	can	be	assigned	as	a<ributes	to	spaDal	elements,	but	descripDons	can	also	from	
part	of	the	shape	alongside	spaDal	elements.	In	the	case	of	descripDons	as	a<ribute,	a	single	
sortal	structure	is	already	made	available	to	contain	these	descripDons.	When	descripDons	
form	a	direct	part	of	the	shape,	there	may	be	a	need	to	disDnguish	descripDons	by	purpose.	
For	this	reason,	the	SGI Setup	component	(see	secDon 5. Star=ng on a SortalGI-based 
parametric model)	accepts	a	list	of	descripDon	type	names,	each	an	idenDfier,	consisDng	only	
of	le<ers,	digits	and/or	underscores	and	always	starDng	with	a	le<er	or	underscore.	For	each	
descripDon	type	name,	a	corresponding	sortal	structure	is	defined	and	made	part	of	the	
global	sortal	structure	or	shape	representaDonal	structure.	For	example,	in	the	case	of	two	
descripDon	type	names	designBrief	and	temporaryDescripDons,	the	resulDng	sortal	structure	
for	shapes	forming	part	of	non-parametric	rules	would	be:	

non-spa4al	a;ribute	type labels/descripDons colors line	thicknesses

spa4al	element	type sortal	structure

points pLabelD

line	segments lLabelD lColor lThickness

plane	segments plLabelD plColor

circles cLabelD cColor cThickness

ellipses eLabelD eColor eThickness

circular	arcs aLabelD aColor aThickness

quadraDc	Bezier	curves bLabelD bColor

	10



bezier3D	^	bLabelD	+	circle3D	^	cLabelD	+	designBrief	+	ellipse3D	^	eLabelD	+	lineSeg3D	^	
lLabelD	+	planeSeg3D	^	plLabelD	+	point3D	^	pLabelD	+	temporaryDescripDons	

	11



5. Star=ng on a SortalGI-based parametric model 

Crea=ng a new parametric model using SortalGI components 
Before	adding	any	other	SGI	component,	you	should	first	add	the	SGI	Setup	component.	This	
component	iniDalizes	the	SortalGI	engine	and	makes	all	funcDonality	available	to	the	model.	

If,	instead,	you	add	the	SGI Setup	component	aKer	other	SGI	components,	you	must	
arrange/put	the	component	to	the	back	(Ctrl+B	or	⇧⌘B)	to	ensure	that	the	SGI Setup	
component	is	executed	before	all	other	components.	

SGI Setup 

The	SGI Setup	component	iniDalizes	the	SortalGI	engine	and	allows	for	some	global	serngs.	
Inputs:	

− displacementX:	opDonal	displacement	value	along	the	X-axis	for	the	purpose	of	
translaDng	any	shape	resulDng	from	a	rule	applicaDon;	if	no	displacement	value	is	
specified,	then	the	rule	applicaDon	will	automaDcally	derive	the	translaDon	distance	
from	the	bounding	box	of	the	shape	(see	secDon	9. Applying a rule)	

− displacementY:	opDonal	displacement	value	along	the	Y-axis	for	the	purpose	of	
translaDng	and	spacing	mulDple	shapes	resulDng	from	a	rule	applicaDon;	if	no	
displacement	value	is	specified,	then	the	rule	applicaDon	will	automaDcally	derive	the	
translaDon	distance	from	the	bounding	box	of	the	shape	(see	secDon	9. Applying a 
rule)	

− textSize:	text	size	to	visualize	any	labels	or	shape	descripDons	that	are	a<ributes	to	
geometries	resulDng	from	a	SortalGI	component	

− descrip4onTypes:	list	of	shape	descripDon	Types,	each	idenDfied	by	its	name	(see	
secDon 8. Specifying shape descrip=ons	for	a	specificaDon	of	descripDons)	

− colorMode:	colorMode,	or	a	data	tree	of	spatialType	and	colorMode	pairs,	governing	
how	two	color	values,	as	a<ributes	of	a	same	spaDal	element,	combine	into	a	single	
value.	OpDons	are	‘graytone’,	‘opaque’,	‘maxRGB’,	‘sumRGB’,	‘avgRGB’	or	
‘alphaRGB’	(default	is	‘opaque’).	

− precision:	number	of	significant	figures	used	for	calculaDons	and	matching.	Empirical	
evidence	has	shown	that	a	precision	of	6	to	8	significant	figures	tends	to	provide	the	
best	results	(default	is	8).	

− reset:	Boolean	value	specifying	whether	to	reset	the	SortalGI	engine	(default	is	False)	
Outputs:	

− success:	True	or	False	indicaDng	success	of	the	setup	

Opening an exis=ng parametric model using SortalGI components 
If	you	find	any	errors	with	SortalGI	components	upon	opening	an	exisDng	parametric	model,	
these	might	be	caused	by	having	older	components	embedded	in	the	exisDng	model	when	
compared	with	the	SortalGI	version	installed.	

Firstly,	check	the	version	number	of	the	specific	component.	If	it	is	an	older	(or	different)	
version	number,	you	can	use	the	SGI Update	component	to	automaDcally	update	this	and	

	12



any	other	components	to	the	installed	version.	Note	that	any	embedded	component	in	the	
parametric	model	contains	its	own	Python	code	and	updaDng	the	SortalGI	components	in	
the	‘UserObjects’	folder	does	not	automaDcally	update	the	embedded	components	in	the	
model.	The	SGI Update	component	will	update	both	the	SortalGI	components	in	the	
‘UserObjects’	folder	(if	instructed	to	do	so)	and	the	embedded	components	in	the	current	
parametric	model.	

Secondly,	if	the	version	number	does	correspond	to	the	installed	version,	instead,	the	
problem	may	relate	to	a	difference	in	inputs	and/or	outputs	between	the	specific	embedded	
component	in	the	model	and	the	component	present	in	the	Grasshopper	Components	Tab	
Panel.	In	this	case,	you	must	replace	the	embedded	component	and	all	its	connecDons	using	
the	available	component.	

SGI Update 

The	SGI Update	component	updates	the	Python	codes	in	the	embedded	components	in	the	
parametric	model	to	the	specified	SortalGI	version.	If	specified,	it	will	also	update	the	
components	in	the	Grasshopper	Components	Tab	Panel.	
Inputs:	

− sourceDir:	opDonal	source	directory	where	the	SortalGI	components	should	be	
copied	from	into	the	‘UserObjects’	folder;	if	omi<ed,	then	only	the	Python	codes	of	
the	embedded	components	in	the	parametric	model	will	be	updated	to	the	current	
SortalGI	version	as	available	in	the	Grasshopper	Components	Tab	Panel	

− updateThis:	Boolean	value	specifying	whether	to	execute	this	SGI Update	component	
(default	is	False)	

Outputs:	
− success:	True	or	False	value	indicaDng	success	of	the	update	

	13



6. Crea=ng a shape 

CreaDng	shapes	using	the	SGI Shape	or	SGI dShape	components	may	serve	different	
purposes.	Shapes	can	be	operated	upon	directly	(e.g.,	sum,	difference	or	product).	A	shape	
can	be	used	to	define	the	leK-hand-side	or	the	right-hand-side	of	a	rule.	Rule	applicaDon	also	
requires	an	input	shape	and,	opDonally,	an	input	subshape	(see	secDon	9. Applying a rule).	

A	shape	may	consist	of	points,	line	segments	and	plane	segments,	circles	and	ellipses,	
circular	arcs	and	quadraDc	Bezier	curves,	as	well	as	shape	descripDons.	Points	may	have	
shape	descripDons	(or	labels)	and	colors	assigned	as	a<ributes.	The	SGI Text Point,	SGI Text 
Curve	and	SGI Text Surface	components	allow	one	to	assign	a	label	or	shape	descripDon	as	a	
text	to	a	point,	curve	or	surface.	Note	that	the	resulDng	geometry	is	only	recognized	by	any	
of	the	SGI	components,	specifically	SGI Shape	or	SGI dShape.	Other	Grasshopper	
components	will	not	recognize	the	text	point/curve/surface.	

The	SGI Shape	and	SGI dShape	components	differ	in	the	fact	that	the	la<er	accepts	shape	
descripDons	using	an	extra	input,	while	the	former	does	not.	

SGI Text Point 

The	Text Point	component	creates	a	labelled	point	geometry,	that	is,	a	point	with	a	label	or	
shape	descripDon	as	a<ribute.	A	label	must	be	double-quoted,	otherwise	it	will	be	
considered	a	shape	descripDon.	The	component	can	also	be	used	to	tag	a	point	(see	
References in	secDon	11. Specifying shape descrip=ons).	
Inputs:	

− P:	point	geometry	
− labelD:	opDonal	text	specifying	the	tag,	label	or	shape	Description	of	the	text	point	

(see	secDon	11. Specifying shape descrip=ons for	a	specificaDon	of	descripDons);	
mulDple	values	can	be	combined	into	a	single	entry	by	separaDng	them	with	verDcal	
bars	

− Tag:	opDonal	text	specifying	the	tag,	label	or	shape	Description	of	the	text	point;	
mulDple	values	can	be	combined	into	a	single	entry	by	separaDng	them	with	verDcal	
bars	

Outputs:	
− G:	resulDng	text	point	

SGI Text Curve 

The	Text Curve	component	creates	a	labelled	curve	geometry,	that	is,	a	curve	with	a	label	or	
shape	descripDon	as	a<ribute.	A	label	must	be	double-quoted,	otherwise	it	will	be	
considered	a	shape	descripDon.	The	component	can	also	be	used	to	tag	a	curve	(see	
References in	secDon	11. Specifying shape descrip=ons).	
Inputs:	

− C:	curve	geometry	
− labelD:	opDonal	text	specifying	the	tag,	label	or	shape	Description	of	the	text	curve	

(see	secDon	11. Specifying shape descrip=ons for	a	specificaDon	of	descripDons);	

	14



mulDple	values	can	be	combined	into	a	single	entry	by	separaDng	them	with	verDcal	
bars	

− Tag:	opDonal	text	specifying	the	tag,	label	or	shape	Description	of	the	text	curve;	
mulDple	values	can	be	combined	into	a	single	entry	by	separaDng	them	with	verDcal	
bars	

Outputs:	
− G:	text	curve	

SGI Text Surface 

The	Text Surface	component	creates	a	labelled	surface	geometry,	that	is,	a	surface	with	a	
label	or	shape	descripDon	as	a<ribute.	A	label	must	be	double-quoted,	otherwise	it	will	be	
considered	a	shape	descripDon.	The	component	can	also	be	used	to	tag	a	surface	(see	
References in	secDon	11. Specifying shape descrip=ons).	
Inputs:	

− S:	surface	geometry	
− labelD:	opDonal	text	specifying	the	tag,	label	or	shape	Description	of	the	text	surface	

(see	secDon	11. Specifying shape descrip=ons for	a	specificaDon	of	descripDons);	
mulDple	values	can	be	combined	into	a	single	entry	by	separaDng	them	with	verDcal	
bars	

− Tag:	opDonal	text	specifying	the	tag,	label	or	shape	Description	of	the	text	surface;	
mulDple	values	can	be	combined	into	a	single	entry	by	separaDng	them	with	verDcal	
bars	

Outputs:	
− G:	text	surface	

SGI Shape 

The	SGI Shape	component	creates	a	shape	from	geometry	and	an	opDonal	reference	point.	
Inputs:	

− G:	geometry	of	points,	lines,	polylines,	(flat)	surfaces,	meshes,	boundary	
representaDons,	circles,	ellipses,	(circular)	arcs,	quadraDc	Bezier	curves	and/or	text	
elements;	any	part	of	the	geometry	not	recognized	will	be	ignored	

− refP:	opDonal	reference	point;	if	specified,	the	geometry	will	be	moved	from	the	
reference	point	to	the	origin,	allowing	a	shape	that	will	serve	as	the	leK-hand-side	or	
right-hand-side	to	a	rule	to	be	drawn	or	specified	spaDally	separated	from	the	other	
side	of	the	rule	

Outputs:	
− Shape:	Shape	object	

SGI dShape 

The	SGI dShape	component	creates	a	shape	from	geometry,	shape	descripDons	(see	secDon 
11. Specifying shape descrip=ons)	and	an	opDonal	reference	point.	The	descripDons	may	be	
omi<ed,	so	may	be	the	geometry,	though	not	both	at	the	same	Dme.	
Inputs:	

	15



− G:	geometry	of	points,	lines,	polylines,	(flat)	surfaces,	meshes,	boundary	
representaDons,	circles,	ellipses,	(circular)	arcs,	quadraDc	Bezier	curves	and/or	text	
elements;	any	part	of	the	geometry	not	recognized	will	be	ignored	

− Descrip4on:	one	or	more	shape	Descriptions,	each	item	preceded	by	the	shape	
descripDon	Type	and	a	colon;	mulDple	shape	descripDons	of	the	same	type	can	be	
combined	into	a	single	item	by	separaDng	them	with	a	verDcal	bar	

− refP:	opDonal	reference	point;	if	specified,	the	geometry	will	be	moved	from	the	
reference	point	to	the	origin,	allowing	a	shape	that	will	serve	as	the	leK-hand-side	or	
right-hand-side	to	a	rule	to	be	drawn	or	specified	spaDally	separated	from	the	other	
side	of	the	rule	

Outputs:	
− Shape:	Shape	object	

SGI A_ributed Shape 

The	SGI Attributed Shape	component	creates	a	shape	from	geometry	and,	opDonally,	
a<ribute	colors	and/or	thicknesses,	shape	descripDons	(see	secDon 11. Specifying shape 
descrip=ons)	and	an	opDonal	reference	point.	The	descripDons	may	be	omi<ed,	so	may	be	
the	geometry,	though	not	both	at	the	same	Dme.	
Inputs:	

− G:	geometry	of	points,	lines,	polylines,	(flat)	surfaces,	meshes,	boundary	
representaDons,	circles,	ellipses,	(circular)	arcs,	quadraDc	Bezier	curves	and/or	text	
elements;	any	part	of	the	geometry	not	recognized	will	be	ignored	

− C:	opDonal	one	or	more	colors,	or	descripDons	referencing	color	values	(the	la<er	
only	within	a	rule)	

− thickness:	opDonal	one	or	more	line	thickness	values,	expressed	as	print	width	
(between	0.0	and	2.0)	

− Descrip4on:	opDonal	one	or	more	shape	Descriptions,	each	item	preceded	by	the	
shape	descripDon	Type	and	a	colon;	mulDple	shape	descripDons	of	the	same	type	can	
be	combined	into	a	single	item	by	separaDng	them	with	a	verDcal	bar	

− refP:	opDonal	reference	point;	if	specified,	the	geometry	will	be	moved	from	the	
reference	point	to	the	origin,	allowing	a	shape	that	will	serve	as	the	leK-hand-side	or	
right-hand-side	to	a	rule	to	be	drawn	or	specified	spaDally	separated	from	the	other	
side	of	the	rule	

Outputs:	
− Shape:	Shape	object	

SGI S2G 

The	SGI S2G	component	converts	any	shape	into	its	geometry,	colors	and	shape	
descripDons.	
Inputs:	

− Shape:	Shape	object	
Outputs:	

− G:	geometry	of	the	Shape	object	
− M:	materials	(color)	for	custom	preview	of	the	geometry	

	16



− Descrip4on:	shape	Descriptions	of	the	Shape	object	(note	that	any	shape	descripDon	
that	is	assigned	as	an	a<ribute	to	part	of	the	geometry	of	the	Shape	object	is	not	
included	as	it	already	forms	part	of	the	geometry)	

	17



7. Manipula=ng a shape 
Following	the	creaDon	of	a	shape,	various	geometrical	operaDons	are	available	as	SortalGI	
components	to	act	upon	a	shape;	e.g.,	to	translate/move	a	shape,	rotate	a	shape,	reflect/
mirror	a	shape	and	scale	a	shape.	Each	of	these	components	takes	as	input	a	shape	and	any	
addiDonal	data	required	to	inform	and	apply	the	transformaDon,	and	returns	the	resulDng	
shape.	Their	operaDon	is	quite	idenDcal	to	the	corresponding	Grasshopper	components,	
except	that	they	act	upon	a	shape.	

In	addiDon,	there	are	SortalGI	components	to	union/sum	two	shapes,	intersect/take	the	
product	of	two	shapes	and	take	the	difference	of	one	shape	with	respect	to	another.	

SGI Move Shape 

The	SGI Move Shape	component	moves	a	shape	along	a	translaDon	vector.	This	component	is	
very	useful	to	ensure	the	visualizaDon	of	shapes	resulDng	from	rule	applicaDon	do	not	
overlap	and	are	properly	spaced	(see	secDon	9. Applying a rule).	
Inputs:	

− Shape:	Shape	object	
− T:	translaDon	vector	

Outputs:	
− Shape:	resulDng	Shape	object	

SGI Rotate Shape 

The	SGI Rotate Shape	component	rotates	a	shape	about	the	normal	vector	of	a	base	plane	by	
a	specified	angle.		
Inputs:	

− Shape:	Shape	object	
− A:	rotaDon	angle	in	radians	
− P:	rotaDon	plane	

Outputs:	
− Shape:	resulDng	Shape	object	

SGI Mirror Shape 

The	SGI Mirror Shape	component	mirrors	a	shape	about	a	base	plane.		
Inputs:	

− Shape:	Shape	object	
− P:	mirror	plane	

Outputs:	
− Shape:	resulDng	Shape	object	

SGI Scale Shape 

The	SGI Scale Shape	component	scales	a	shape	about	a	center	of	scaling	uniformly	by	a	
specified	scaling	factor.	

	18



Inputs:	
− Shape:	Shape	object	
− C:	center	of	scaling	
− F:	scaling	factor	

Outputs:	
− Shape:	resulDng	Shape	object	

SGI Sum 

The	SGI Sum	component	sums	(combines)	two	shapes	together.	
Inputs:	

− Shape1:	Shape	object	
− Shape2:	another	Shape	object	

Outputs:	
− Shape:	resulDng	Shape	object	
− T:	translaDon	vector	that	can	be	used	to	move/displace	the	resulDng	shape	wrt	the	

original	shapes	

SGI Product 

The	SGI Product	component	determines	the	product	(intersecDon)	of	two	shapes.	
Inputs:	

− Shape1:	Shape	object	
− Shape2:	another	Shape	object	

Outputs:	
− Shape:	resulDng	Shape	object	
− T:	translaDon	vector	that	can	be	used	to	move/displace	the	resulDng	shape	wrt	the	

original	shapes	

SGI Difference 

The	SGI Difference	component	takes	the	difference	(complement)	of	one	shape	with	respect	
to	another	shape.	
Inputs:	

− Shape1:	Shape	object	
− Shape2:	another	Shape	object	

Outputs:	
− Shape:	resulDng	Shape	object	
− T:	translaDon	vector	that	can	be	used	to	move/displace	the	resulDng	shape	wrt	the	

original	shapes	

SGI Sum All 

The	SGI Sum All	component	sums	(combines)	any	number	of	shapes	together.	
Inputs:	

− Shapes:	list	of	Shape	objects	
Outputs:	

	19



− Shape:	resulDng	Shape	object	
− T:	translaDon	vector	that	can	be	used	to	move/displace	the	resulDng	shape	wrt	the	

original	shapes	

	20



8. Crea=ng a rule 
A	rule	is	conceptually	specified	in	the	form	lhs	→	rhs,	where	the	leK-hand-side	(lhs)	of	the	
rule	specifies	the	pa<ern	to	be	matched	under	some	transformaDon	and	the	right-hand-side	
(rhs)	specifies	the	resulDng	pa<ern	that	replaces	the	matched	pa<ern	under	the	same	
transformaDon.	That	is,	applying	a	rule	a	→	b	to	a	given	shape	s	involves	determining	a	
transformaDon	f	such	that	f(a)	is	a	part	of	s	(f(a)	≤	s),	following	which	s	is	replaced	by	s	–	f(a)	
+	f(b).	

A	shape	rule	is	commonly	understood	to	imply	that	both	lhs	and	rhs	consDtute	a	geometry,	
possibly	including	non-geometric	a<ributes,	e.g.,	labels	or	descripDons.	A	descripDon	rule,	
then,	implies	that	both	lhs	and	rhs	consDtute	a	shape	descripDon	of	the	same	shape	
descripDon	type.	Combining	a	shape	rule	with	one	or	more	descripDon	rules	specifies	a	
compound	rule,	where	the	different	component	rules	operate	in	parallel,	although	they	may	
interact	with	each	other.	

A	Rule	object	specifies	such	a	compound	rule	although	it	can	be	used	to	specify	a	shape	rule	
or,	alternaDvely,	one	or	more	descripDon	rules.	That	is,	which	component	rules	are	included	
depends	on	the	shapes	that	are	provided	as	lhs	and	rhs	of	the	(compound)	rule.	If	the	lhs	
does	not	include	any	geometry,	then	the	rhs	may	not	include	any	geometry	either,	as	no	
matching	transformaDon	can	be	determined	from	an	empty	shape.	With	respect	to	shape	
descripDons,	if	either	the	lhs	or	rhs	includes	a	shape	descripDon	type	but	the	other	side	does	
not,	then	an	empty	shape	descripDon	of	that	type	is	automaDcally	included	in	the	other	side	
to	ensure	a	full	correspondence	between	shape	descripDon	types.	

Two	types	of	rules	are	disDnguished,	parametric-associaDve	rules	and	non-parametric	rules.	
The	la<er	are	the	easiest	to	understand.	In	the	case	of	a	non-parametric	rule,	the	pa<ern	
specified	by	the	lhs	of	the	rule	must	match	a	part	of	the	given	shape	under	a	similarity	
transformaDon	(translaDon,	rotaDon,	reflecDon	and/or	uniform	scaling).	That	is,	when	
matching	for	a	square	of	line	segments,	any	square	of	line	segments	from	the	given	shape	
will	do,	even	if	these	line	segments	extend	beyond	the	corner	points	of	the	square.	The	same	
applies	when	matching	for	a	rectangle,	however,	only	rectangles	with	the	same	raDo	
between	length	and	width	will	be	matched.	

A	parametric-associaDve	rule	matches	a	much	larger	variety	of	shapes.	In	principle,	when	
matching	a	triangle	of	line	segments,	any	triangle	of	line	segments	in	the	given	shape	will	be	
matched,	irrespecDve	of	its	shape.	The	corresponding	transformaDon	is	a	topological	
transformaDon	though	there	is	no	mathemaDcal	representaDon	for	such	a	transformaDon	
(unlike	for	a	similarity	transformaDon).	However,	some	constraints	do	apply.	Specifically,	
colinear,	parallel	and	perpendicular	lines	(and	points)	are	automaDcally	idenDfied	in	the	lhs	
and	considered	as	constraints	for	matching.	Thus,	specifying	a	right-angled	triangle	as	the	lhs	
will	only	match	right-angled	triangles	in	the	given	shape,	however,	specifying	an	equilateral	
or	isosceles	triangle	as	the	lhs	will	have	no	effect,	any	triangle	in	the	given	shape	will	be	
matched.	

While	in	some	cases	it	may	be	difficult	to	predict	the	exact	matching	results	of	the	lhs	of	a	
parametric-associaDve	rule,	the	matching	mechanism	broadly	follows	the	following	steps:	

1. IdenDfy	all	(infinite)	lines	that	carry	any	line	segment	in	the	lhs.	
2. IdenDfy	all	(infinite)	lines	that	carry	any	line	segments	in	the	given	shape.	

	21



3. Enumerate	all	combinaDons	of	lines	from	the	given	shape	that	match	the	number	of	
lines	for	the	lhs.	

4. Eliminate	all	combinaDons	that	do	not	preserve	parallelism	and	perpendicularity	
between	lines	as	specified	by	the	lhs.	

5. IdenDfy	all	intersecDon	points	of	(infinite)	lines	in	the	lhs	and	note	whether	the	
intersecDon	point	falls	inside,	outside	or	is	an	endpoint	of	any	line	segment	on	each	
infinite	line.	

6. Do	the	same	for	the	remaining	combinaDons	of	(infinite)	lines	for	the	given	shape:	
a. Eliminate	any	combinaDons	where	an	inside	intersecDon	point	for	the	lhs	is	

not	matched	with	an	inside	intersecDon	point	for	the	given	shape.	
b. Eliminate	any	combinaDons	where	an	intersecDon	point	that	is	an	endpoint	

for	the	lhs	is	not	matched	with	an	intersecDon	point	that	is	either	an	endpoint	
or	an	inside	point	for	the	given	shape.	

7. For	the	lhs,	idenDfy	all	endpoints	of	line	segments	on	these	(infinite)	lines	and	note	
their	ordering	also	with	respect	to	the	inside	intersecDon	points.	

8. Do	the	same	for	the	given	shape	and	eliminate	any	remaining	combinaDons	where	
two	intersecDon	points	in	the	lhs	are	contained	within	a	single	line	segment	and	the	
corresponding	intersecDon	points	in	the	given	shape	are	not.		

A	similar	mechanism	applies	to	plane	segments.	

SGI Rule 

The	SGI Rule	component	creates	a	non-parametric	rule	from	a	leK-hand-side	(lhs)	and	a	
right-hand-side	(rhs)	shape,	a	name,	a	(opDonal)	brief	descripDon,	and	any	number	of	
predicates	(see	secDon	12. Specifying predicates).	If	a	shape	descripDon	type	is	present	as	
part	of	one	shape	(lhs	or	rhs)	but	absent	from	the	other	shape,	an	empty	shape	descripDon	
of	that	type	is	automaDcally	added	to	the	other	shape	within	the	rule.	
Inputs:	

− Name:	rule	Name	(may	contain	only	le<ers,	digits	and	underscores,	not	starDng	with	
a	digit);	this	rule	name	should	be	unique	

− text:	opDonal,	brief	descripDon	of	the	rule	
− lhShape:	Shape	object	represenDng	the	leK-hand-side	of	the	rule	
− Predicate:	opDonal	Predicate	or	list	thereof	
− rhShape:	Shape	object	represenDng	the	right-hand-side	of	the	rule	

Outputs:	
− Rule:	non-parametric	Rule	object	

SGI pRule 

The	SGI pRule	component	creates	a	parametric-associa4ve	rule	from	a	leK-hand-side	(lhs)	
and	a	right-hand-side	(rhs)	shape,	a	name,	a	(opDonal)	brief	descripDon,	and	any	number	of	
predicates	and/or	direcDves	(see	secDons	12. Specifying predicates	and	13. Specifying 
direc=ves).	If	a	shape	descripDon	type	is	present	as	part	of	one	shape	(lhs	or	rhs)	but	absent	

	22



from	the	other	shape,	an	empty	shape	descripDon	of	that	type	is	automaDcally	added	to	the	
other	shape	within	the	rule.	
Inputs:	

− Name:	rule	Name	(may	contain	only	le<ers,	digits	and	underscores,	not	starDng	with	
a	digit);	this	rule	name	should	be	unique	

− text:	opDonal,	brief	descripDon	of	the	rule	
− lhShape:	Shape	object	represenDng	the	leK-hand-side	of	the	rule	
− Predicate:	opDonal	Predicate	or	list	thereof	
− rhShape:	Shape	object	represenDng	the	right-hand-side	of	the	rule	
− Direc4ve:	opDonal	Directive	or	list	thereof	

Outputs:	
− pRule:	parametric-associaDve	Rule	object	

SGI Rule Info 

The	SGI Rule Info	component	deconstructs	any	(parametric-associaDve	or	non-parametric)	
rule	into	its	leK-hand-side	and	right-hand-side	shapes,	its	rule	name	and	descripDon,	and	its	
predicates	and	direcDves,	if	any.	
Inputs:	

− Rule:	Rule	object	
Outputs:	

− Name:	rule	Name	
− text:	rule	descripDon	
− lhShape:	leK-hand-side	Shape	object	
− Predicate:	zero,	one	or	more	Predicates	
− rhShape:	right-hand-side	Shape	object	
− Direc4ve:	zero,	one	or	more	Directives	

SGI Get Rule  

The	SGI Get Rule component	retrieves	a	(parametric-associaDve	or	non-parametric)	rule	or	
flow	(see	secDon 10. Crea=ng and applying flows (composite rules))	by	its	name.	
Inputs:	

− Name:	rule	or	flow	Name	
Outputs:	

− Rule:	(non-parametric	or	parametric-associaDve)	Rule	or	Flow	object	(or	null)	
− is_Rule:	Boolean	value	indicaDng	whether	the	object	is	a	Rule	(True)	or	Flow	(False)	

object	

SGI All Rules  

The	SGI All Rules component	retrieves	a	list	of	all	exisDng	(parametric-associaDve	or	non-
parametric)	rules	and	flows	and	their	names.	
No	inputs:	

	23



Outputs:	
− ruleNames:	list	of	all	rule	Names	
− Rules:	list	of	all	(parametric-associaDve	or	non-parametric)	Rule	objects	
− flowNames:	list	of	all	flow	Names	
− Flows:	list	of	all	Flow	objects	

Impor=ng SortalGI rules from a different parametric model 
Rules	and	flows	(see	secDon 10. Crea=ng and applying flows (composite rules))	created	using	
SortalGI	components	in	one	parametric	model	can	be	exported	to	a	text	file	and	
subsequently	imported	into	another	parametric	model	to	be	applied	there.	The	SGI Export	
component	exports	any	number	of	rules	and	flows	into	a	text	file	in	the	SDL	(Sortal	
DescripDon	language)	format.	The	SGI Import	component	imports	any	text	file	in	the	SDL	
format	and	makes	the	rules	and	flows	available	for	rule	applicaDon.	

SGI Export 

The	SGI Export	component	writes	any	number	of	rules	and/or	flows	(see	secDon 10. 
Crea=ng and applying flows (composite rules))	into	a	text	file	in	the	SDL	(Sortal	DescripDon	
language)	format.	Note	that	if	the	file	already	exists,	its	content	will	be	overwri<en.	
Inputs:	

− filePath:	file	path	the	rules	and	flows	will	be	wri<en	to	
− Rules:	list	of	Rule	and/or	Flow	objects	

No	outputs.	

SGI Import 

The	SGI Import	component	reads	a	text	file	in	the	SDL	(Sortal	DescripDon	language)	format	
and	makes	the	rules	and/or	flows	available	for	applicaDon.	
Inputs:	

− filePath:	the	path	of	the	SDL	file	that	the	rules	and	flows	will	be	read	from	
Outputs:	

− rules:	list	of	Rule	objects	
− flows:	list	of	Flow	objects	
− messages:	list	of	messages	indicaDng	success	or	failure	reading	the	file	and	creaDng	

the	Rule	or	Flow	objects	

	24



9. Applying a rule 
Applying	a	rule	to	a	given	shape	involves	determining	a	transformaDon	under	which	the	leK-
hand-side	(lhs)	of	the	rule	is	a	part	of	the	given	shape.	That	is,	rule	applicaDon	involves	two	
steps:	recogniDon	and	manipulaDon	(search	and	replace);	recogniDon	implies	matching	the	
lhs	of	the	rule	under	some	transformaDon	to	a	part	of	the	given	shape	and	manipulaDon	
implies	replacing	the	recognized	lhs	by	the	right-hand-side	(rhs)	of	the	shape	rule	under	the	
same	transformaDon.	

Obviously,	the	lhs	of	a	shape	rule	may	match	mulDple	parts	of	the	same	given	shape.	These	
matches	may	correspond	to	different	but	similar	parts,	e.g.,	if	the	lhs	of	a	non-parametric	
rule	specifies	a	square,	the	rule	will	match	any	square	in	the	given	shape	independent	of	its	
locaDon,	rotaDon,	reflecDon	or	scale	(under	a	similarity	transformaDon).	However,	these	
matches	may	also	apply	to	the	same	part	in	different	ways.	Again,	if	the	lhs	of	a	non-
parametric	rule	specifies	a	square,	which	has	90°	rotaDonal	symmetry,	and	the	rhs	specifies	
the	same	square	moved	diagonally,	then	any	square	in	the	given	shape	will	amount	to	four	
matches	as	the	square	may	be	moved	into	any	of	its	four	diagonal	direcDons.	

The	SortalGI	plug-in	disDnguishes	four	rule	applicaDon	components:	the	first	one,	SGI Apply,	
applies	only	a	single	match	(either	randomly	selected	or	specified	by	its	index),	while	the	
second	one,	SGI Apply All,	applies	all	matches	in	parallel,	returning	as	many	results	as	there	
are	matches,	and	the	third	one,	SGI Apply All Together,	applies	all	(or	a	selecDon	of)	
matches	together	(in	parallel),	returning	a	single,	combined	result.	The	fourth	one,	SGI 
Derive,	takes	a	series	of	rules	as	input	and	applies	each	rule	in	sequence,	returning	all	
intermediate	results	as	well	as	the	final	result.	All	four	components	accept	both	a	shape	and	
an	opDonal	subshape.	If	specified,	the	la<er	must	be	a	subshape,	that	is,	part	of,	the	former.	
If	a	subshape	is	specified	then	recogniDon/matching	is	restricted	to	the	subshape.	This	allows	
one	to	reduce	the	number	of	matches	where	appropriate.	ManipulaDon	will	always	apply	to	
the	enDre	shape.	

Finally,	a	fiKh	component,	SGI Matches,	does	not	actually	apply	the	given	rule	but,	instead	
yields	all	the	matching	shapes	to	the	leK-hand-side	of	the	rule.	As	such,	the	Matches	
component	can	be	used	to	search	for	a	given	shape.	As	the	results	will	be	returned	in	a	list,	
serving	this	list	as	input	to	a	rule	applicaDon	component	will	ensure	rule	applicaDon	(both	
recogniDon	and	manipulaDon)	applies	separately	to	each	result,	if	possible,	allowing	for	a	
divide-and-conquer-approach	that	may	be	more	efficient	for	subsequent	rule	applicaDons.	

For	any	of	these	components,	every	resulDng	shape	is	accompanied	by	a	translaDon	vector.	
In	the	case	of	SGI Apply (and SGI Apply All Together),	the	translaDon	vector	allows	the	
resulDng	shape	to	be	visualized	aside	from	the	original	shape,	along	the	X-axis.	In	the	case	of	
SGI Apply All (and SGI Matches),	the	translaDon	vectors	allow	the	resulDng	shapes	to	be	
visualized	one	above	the	other,	along	the	Y-axis,	and	aside	from	the	original	shape,	along	the	
X-axis.	In	the	case	of	SGI Derive,	the	translaDon	vectors	allow	the	resulDng	shapes	to	be	
visualized	one	aside	from	the	other,	and	from	the	original	shape,	along	the	X-axis.	The	extent	
of	the	translaDon	vector	is	specified	by	the	displacementX	and	displacementY	values	
provided	to	the	SGI Setup	component	or,	if	no	value	is	provided,	by	the	bounding	box	of	the	
original	shape	(see	secDon	3. Star=ng on a SortalGI-based parametric model).	

All	rule	applicaDon	components	accept	parametric-associaDve	and	non-parametric	rules.	

	25



SGI Apply 

The	SGI Apply	component	determines	all	possible	matches	of	a	rule	with	respect	to	a	shape	
(or	subshape),	but	applies	only	a	single	one,	either	randomly	selected	or	as	specified	by	an	
index	value.	
Inputs:	

− Rule:	Rule	object	
− Shape:	Shape	object	to	apply	the	rule	to	
− subShape:	opDonal	Shape	object	to	restrict	matches	to;	if	specified,	this	shape	must	

be	a	subshape,	that	is,	part	of,	the	shape	Shape	
− i:	opDonal	index	to	select	which	match	to	consider	for	rule	applicaDon;	a	value	of	–1	

(default)	selects	a	random	match,	any	number	outside	the	index	range	yields	the	last	
one	among	the	list	of	matches	

Outputs:	
− Shape:	Shape	object	resulDng	from	rule	applicaDon;	if	no	match	is	found	then	the	

original	shape	is	returned	
− T:	translaDon	vector	to	allow	the	shape	to	be	drawn	next	to	the	original	shape,	along	

the	X-axis	
− success:	True	or	False	indicaDng	whether	a	match	was	found	or	not	

SGI Apply All 

The	SGI Apply All	component	determines	and	applies	all	possible	matches	of	a	rule	with	
respect	to	a	shape	(or	subshape).	
Inputs:	

− Rule:	Rule	object	
− Shape:	Shape	object	to	apply	the	rule	to	
− subShape:	opDonal	Shape	object	to	restrict	matches	to;	if	specified,	this	shape	must	

be	a	subshape,	that	is,	part	of,	the	shape	Shape	
Outputs:	

− Shapes:	list	of	Shape	objects	corresponding	to	the	number	of	rule	applicaDons	found;	
if	no	match	is	found	then	the	original	shape	is	returned	

− n:	number	of	matches	found,	corresponds	to	the	length	of	the	lists	Shapes	and	T	
− T:	list	of	translaDon	vectors	to	allow	the	shapes	to	be	drawn	one	above	the	other,	

along	the	Y-axis,	and	next	to	the	original	shape,	along	the	X-axis	
− success:	True	or	False	indicaDng	whether	at	least	one	match	was	found	or	not	

SGI Apply All Together 

The	SGI Apply All Together	component	determines	and	applies	(in	parallel)	all	or	a	specified	
selecDon	of	possible	matches	of	a	rule	with	respect	to	a	shape	(or	subshape),	and	combines	
them	into	a	single	shape.	This	behavior	corresponds	to	the	shape	schema	x	→	Σ	F(prt(x))	
when	F	refers	to	a	single	rule.	

	26



Inputs:	
− Rule:	Rule	object	
− Shape:	Shape	object	to	apply	the	rule	to	
− subShape:	opDonal	Shape	object	to	restrict	matches	to;	if	specified,	this	shape	must	

be	a	subshape,	that	is,	part	of,	the	shape	Shape	
− i:	opDonal	list	of	indices	to	select	which	matches	to	include	in	the	result;	in	case	of	an	

empty	list	all	matches	are	included	
Outputs:	

− Shape:	Shape	object	resulDng	from	all	or	the	specified	selecDon	of	rule	applicaDons;	if	
no	match	is	found	then	the	original	shape	is	returned	

− T:	translaDon	vector	to	allow	the	shape	to	be	drawn	next	to	the	original	shape,	along	
the	X-axis	

− success:	True	or	False	indicaDng	whether	a	match	was	found	or	not	

SGI Derive 

The	SGI Derive	component	acts	as	a	sequence	of	SGI Apply	components.	Given	a	list	of	
rules,	it	applies	each	in	sequence.	
Inputs:	

− Rules:	list	of	Rule	objects	
− Shape:	Shape	object	to	apply	the	first	rule	to	
− subShape:	opDonal	Shape	object	to	restrict	the	first	match	to,	or	a	list	of	shape	objects	

to	restrict	consecuDve	matches	to;	if	specified,	the	shape	must	be	a	subshape,	that	is,	
part	of,	the	input	shape	of	the	respecDve	rule	

− i:	opDonal	index	to	select	which	matches	to	consider	for	rule	applicaDon;	a	value	of	–
1	(default)	selects	a	random	match,	any	number	outside	the	index	range	yields	the	
last	one	among	the	list	of	matches;	may	be	specified	as	a	list	of	indices	

− runIt:	Boolean	value	specifying	whether	to	execute	the	component	or	not	
Outputs:	

− Shapes:	list	of	Shape	objects,	one	for	each	successful	rule	applicaDon;	if	no	match	is	
found	for	any	rule	then	the	input	shape	for	the	first	rule	is	returned	

− n:	number	of	successful	rule	applicaDons,	corresponds	to	the	length	of	the	lists	
Shapes	and	T	if	greater	than	0	

− T:	list	of	translaDon	vectors	to	allow	the	shapes	to	be	drawn	one	next	to	the	other	
and	to	the	original	shape,	along	the	X-axis	

− success:	list	of	True	or	False	values	indicaDng	for	each	rule	object	whether	at	least	
one	match	was	found	or	not	

SGI Matches 

The	SGI Matches	component	determines	all	possible	matches	of	a	rule	with	respect	to	a	
shape.	Note	that	depending	on	the	right-hand-side	of	the	rule,	idenDcal	matches	may	result	
corresponding	to	otherwise	disDnct	rule	applicaDons.	
Inputs:	

− Rule:	Rule	object	

	27



− Shape:	Shape	object	to	match	the	rule	to	
Outputs:	

− Shapes:	list	of	Shape	objects	corresponding	to	the	rule	matches	
− n:	number	of	matches	found,	corresponds	to	the	length	of	the	lists	Shapes	and	T	
− T:	list	of	translaDon	vectors	to	allow	the	shapes	to	be	drawn	one	above	the	other,	

along	the	Y-axis,	and	next	to	the	original	shape,	along	the	X-axis	
− success:	True	or	False	indicaDng	whether	at	least	one	match	was	found	or	not	

	28



10. Crea=ng and applying flows (composite rules) 
Flows	are	composite	rules	embedding	algorithmic	pa<erns	such	as	sequence,	iteraDon	and	
selecDon.	Two	rules	apply	in	sequence	if	upon	a	successful	applicaDon	of	the	first	rule,	the	
second	rule	applies	to	the	result	from	the	applicaDon	of	the	first	rule.	Similarly,	a	single	rule	
can	be	applied	iteraDvely	if	upon	every	successful	applicaDon	of	the	rule,	a	new	applicaDon	is	
a<empted	on	the	result	of	the	last	successful	applicaDon.	SelecDon,	on	the	other	hand,	
specifies	two	(or	more)	alternaDve	rules,	where	each	may	be	a<empted	to	be	applied	but,	as	
soon	as	one	rule	applies	successfully,	the	remaining	rules	are	ignored.	
A	conceptual,	diagrammaDc	representaDon	of	the	three	algorithmic	pa<erns	sequence	(leK),	
iteraDon	(middle)	and	selecDon	(right):	

	
In	the	diagrams	above,	rule	applicaDon	flows	from	leK	to	right,	starDng	from	the	dot	and	
conDnuing	with	rule	r1.	Upon	successful	(S)	applicaDon	of	rule	r1,	the	applicaDon	flow	
conDnues	as	indicated.	Upon	failure	(F),	depending	on	the	pa<ern	and	its	parameters,	the	
applicaDon	flow	may	conDnue	(solid	arrow)	or	backtracking	may	occur	(dashed	arrow).	Note	
that	backtracking	is	a	more	complex	process	of	revisiDng	previous	rules	in	search	of	
alternaDve	soluDons	that	cannot	be	fully	captured	in	the	diagrams	above.	In	general,	a	rule	
may	have	mulDple	potenDal	applicaDons	and,	within	a	flow,	only	one	applicaDon	will	be	
selected	to	proceed	with.	Backtracking,	then,	may	lead	to	the	subsequent	selecDon	of	an	
alternaDve	applicaDon	to	proceed	with.	In	a	sequence,	every	rule	must	apply	successfully,	or	
none	at	all	will	apply.	An	iteraDon	customarily	ends	at	some	point.	Whether	this	ending	is	
considered	success	(and	the	flow	proceeds)	or	failure	(and	backtracking	occurs)	is	dependent	
on	the	minimum	number	of	iteraDons	specified.	A	selecDon	only	fails	if	all	of	its	rules	fail	to	
apply.	Note	that	any	rule	within	a	flow	may	itself	be	composed	as	a	flow,	such	that	flows	can	
be	hierarchically	composed	of	sub-flows,	each	with	their	own	pa<ern	of	sequence,	iteraDon	
or	selecDon.	

Flow matching approaches 
Backtracking	can	be	suppressed	by	adopDng	a	possessive	matching	approach	rather	than	a	
greedy	matching	approach,	as	is	the	default.	Specifically,	assigning	a	possessive	matching	
approach	to	a	sub-flow	ensures	that	when	this	sub-flow	has	successfully	applied,	no	
backtracking	to	this	sub-flow	will	occur	from	any	later	point	in	the	super-flow.	However,	
backjumping	may	occur	to	any	non-possessive	sub-flow	that	precedes	the	possessive	sub-
flow,	upon	which	the	flow	applicaDon	may	eventually	return	to	the	possessive	sub-flow.	
Obviously,	if	every	sub-flow	is	assigned	a	possessive	matching,	backjumping	will	be	
suppressed	as	well.	
An	alternaDve	to	greedy	and	possessive	matching	is	lazy	matching.	Where	greedy	(and	
possessive)	matching	will	iterate	unDl	failure	or	the	maximum	number	of	iteraDons	has	been	
achieved,	lazy	matching	will	end	an	iteraDon	as	soon	as	the	minimum	number	of	iteraDons	
has	been	achieved.	Similar	to	greedy	matching,	backtracking	may	occur,	but	in	the	case	of	
iteraDve	backtracking	under	lazy	matching,	an	addiDonal	iteraDon	will	be	tried	rather	than	
backtracking	to	the	previous	iteraDon.	
Finally,	a	probabilisDc	approach	to	iteraDon	is	provided	as	well.	In	this	case,	a	random	
number	of	Dmes	to	iterate,	within	the	minimum-maximum	range,	will	be	selected	and	tried.	

r1 S

F F

r2 r1
F

S r1

F

S

r2

F

S

S

	29



SGI Flow Matching  

The	SGI Flow Matching selector	allows	to	select	from	a	list	of	flow	Matching	approaches:	
greedy,	possessive,	lazy	and	probabilisDc.	

Itera=on flow quan=fiers 
An	iteraDon	is	necessarily	defined	by	the	number	of	iteraDve	applicaDons	that	are	expected	
or	allowed.	We	adopt	a	quanDfier	(from	regular	expressions)	to	indicate	both	the	minimum	
and	maximum	number	of	iteraDons	allowed:	

SGI Flow Quan=fier  

The	SGI Flow Quantifier selector	allows	to	select	from	a	sublist	of	iteraDon	flow	Quantifiers,	
specifically,	‘?’,	‘*’	and	‘+’.	

SGI Flow Quan=fier {n,m) 

The	SGI Flow Quantifier {n,m} component	composes	an	iteraDon	flow	quanDfier	from	a	
minimum	and	(opDonal)	maximum	value,	specifying,	respecDvely,	the	minimum	and	
maximum	number	of	Dmes	a	flow	(structure)	would	be	iterated	upon.	If	a	maximum	value	is	
omi<ed,	the	flow	(structure)	would	be	iterated	upon	any	number	of	Dmes,	but	at	least	the	
minimum	number	of	Dmes.	
Inputs:	

− min:	minimum	number	of	Dmes	a	flow	structure	would	be	iterated	upon	
− max:	opDonal,	maximum	number	of	Dmes	a	flow	would	be	iterated	upon	

Outputs:	
− Quan4fier:	iteraDon	flow	Quantifier	expressed	as	text,	in	the	form	{min},	{min,}	or	

(min,	max}	

quan4fier
number	of	itera4ons

min max explana4on

? 0 1 Zero	or	one	Dme	—	no	backtracking	occurs

* 0 - Zero,	one	or	more	Dmes	—	the	iteraDon	proceeds	unDl	rule	
applicaDon	fails,	no	backtracking	occurs

+ 1 - One	or	more	Dmes	—	the	iteraDon	proceeds	unDl	rule	applicaDon	
fails,	backtracking	only	occurs	if	the	rule	fails	at	the	very	first	Dme

{n} n n Exactly	n	Dmes	—	the	iteraDon	proceeds	unDl	rule	applicaDon	fails,	
backtracking	occurs	if	fewer	than	n	applicaDons	succeed

{n,} n - n	or	more	Dmes	—	the	iteraDon	proceeds	unDl	rule	applicaDon	fails,	
backtracking	occurs	if	fewer	than	n	applicaDons	succeed

{n,m} n m Any	number	of	Dmes	between	n	and	m	—	the	iteraDon	proceeds	
unDl	rule	applicaDon	fails,	backtracking	occurs	if	fewer	than	n	
applicaDons	succeed

	30



Flow crea=on 
The	SortalGI	plug-in	disDnguishes	four	flow	creaDon	components.	The	first	creates	a	flow	
structure	as	a	composite	rule	embedding	a	sequence	pa<ern	and,	opDonally,	an	iteraDon	
pa<ern	nesDng	the	sequence	pa<ern.	The	second	does	the	same	for	a	selecDon	instead	of	a	
sequence	pa<erns.	The	third		creates	a	flow	structure	as	a	composite	rule	embedding	the	
negaDon	of	a	rule,	flow	or	flow	structure,	reversing	success	and	failure.	Finally,	the	last	
component	creates	a	proper	flow,	from	a	flow	structure,	a	flow	name	and	an	opDonal	
descripDon.	In	addiDon,	a	list	component	serves	to	ensure	the	proper	ordering	of	rules	and/
or	flow	structures.	

SGI List 

The	SGI List component	is	an	auxiliary	component	that	constructs	a	list	from	any	number	of	
inputs.	Note	that	the	inputs	are	guaranteed	to	be	appended	to	the	list	in	order.	
Inputs:	

− x,	y:	by	default,	the	component	offers	two	input	parameters,	but	addiDonal	input	
parameters	can	be	inserted;	all	inputs	specified	will	be	added	to	the	resulDng	list	

Outputs:	
− L:	list	resulDng	from	the	specified	number	of	inputs	

SGI Rule Sequence 

The	SGI Rule Sequence component	creates	a	rule	sequence	from	a	list	of	rules,	flows	and/or	
flow	structures	and,	opDonally,	a	quanDfier	and	matching	approach.	A	rule	sequence	is	a	
flow	structure	embedding	the	sequence	pa<ern.	It	applies	successfully	if	each	of	the	
component	rules	(or	flows)	applies,	in	order.	Backtracking	may	occur	within	the	sequence.	
The	opDonal	quanDfier	serves	to	add	an	iteraDon	pa<ern	nesDng	the	sequence	pa<ern,	
where	the	quanDfier	specifies	the	minimum	and	maximum	number	of	Dmes	the	sequence	
can	be	applied	iteraDvely.		
Inputs:	

− Rs:	ordered	list	of	Rule	objects,	Flow	objects	and/or	R	(flow	structure)	objects	
(sequence,	disjuncDon	or	negaDon)	

− Quan4fier:	opDonal	Quantifier	specifying	how	many	Dmes	the	sequence	may	or	
should	be	iterated	(one	of	‘?’,	‘*’,	‘+’,	‘{n}’,	{n,}’	or	‘{n,m}’);	default	is	no	iteraDon,	
which	is	equivalent	to	‘{1}’.	

− Matching:	opDonal	Matching	approach	(greedy:	‘G’,	possessive:	‘PO’,	lazy:	‘L’,	or	
probabilisDc:	‘PR’);	default	is	greedy.	

Outputs:	
− sequenceR:	R	(flow	structure)	object	(sequence)	
− nota4on:	formal,	textual	specificaDon	of	the	rule	sequence	(see	Appendix C: A formal 

nota=on for flow descrip=ons for	an	explicaDon	of	the	format)	

SGI Rule Disjunc=on 

The	SGI Rule Disjunction component	creates	a	rule	disjuncDon	from	a	list	of	rules,	flows	
and/or	flow	structures	and,	opDonally,	a	quanDfier,	matching	approach	and	ordering.	A	rule	

	31



disjuncDon	is	a	flow	structure	embedding	the	selecDon	pa<ern.	It	applies	successfully	if	any	
one	of	the	component	rules	(or	flows)	applies.	The	component	rules	(or	flows)	are	tried	
either	in	the	order	specified,	or	in	a	random	order.	The	opDonal	quanDfier	serves	to	add	an	
iteraDon	pa<ern	nesDng	the	selecDon	pa<ern,	where	the	quanDfier	specifies	the	minimum	
and	maximum	number	of	Dmes	the	selecDon	can	be	applied	iteraDvely.	
Inputs:	

− Rs:	ordered	list	of	Rule	objects,	Flow	objects	and/or	R	(flow	structure)	objects	
(sequence,	disjuncDon	or	negaDon)	

− Quan4fier:	opDonal	Quantifier	specifying	how	many	Dmes	the	selecDon	may	or	
should	be	iterated	(one	of	‘?’,	‘*’,	‘+’,	‘{n}’,	{n,}’	or	‘{n,m}’);	default	is	no	iteraDon,	
which	is	equivalent	to	‘{1}’.	

− Matching:	opDonal	Matching	approach	(greedy:	‘G’,	possessive:	‘PO’,	lazy:	‘L’,	or	
probabilisDc:	‘PR’);	default	is	greedy.	

− ordering:	opDonal	Boolean	value	specifying	the	order	in	which	the	component	rules	
(or	flows)	are	tried;	default	(True)	is	in	the	order	specified,	otherwise	(False)	a	
random	order	is	applied	

Outputs:	
− disjunc4onR:	R	(flow	structure)	object	(disjuncDon)	
− nota4on:	formal,	textual	specificaDon	of	the	rule	disjuncDon	(see	Appendix C: A 

formal nota=on for flow descrip=ons for	an	explicaDon	of	the	format)	

SGI Rule Nega=on 

The	SGI Rule Negation component	creates	a	rule	negaDon	from	a	single	rule,	flow	or	flow	
structure.	A	rule	negaDon	is	a	flow	structure	that	applies	successfully	only	if	applicaDon	of	
the	underlying	rule,	flow	or	flow	structure	fails	and	vice	versa	.	Note	that	a	rule	negaDon	only	
checks	whether	a	rule	applies	and	rule	applicaDon	itself	is	necessarily	suppressed,	as	rule	
applicaDon	would	imply	that	rule	negaDon	failed	and,	as	such,	backtracking	would	occur.	
Inputs:	

− R:	Rule	object,	Flow	object	or	R	(flow	structure)	object	(sequence	or	disjuncDon)	
Outputs:	

− nega4onR:	R	(flow	structure)	object	(negaDon)	
− nota4on:	formal,	textual	specificaDon	of	the	rule	negaDon	(see	Appendix C: A formal 

nota=on for flow descrip=ons for	an	explicaDon	of	the	format)	

SGI Flow 

The	SGI Flow component	creates	a	flow	from	a	rule,	flow	or	flow	structure	(sequence,	
disjuncDon	or	negaDon),	a	flow	name	and	an	opDonal,	brief	descripDon.	A	flow	can	be	
considered	a	composite	rule;	as	such,	the	flow	name	must	not	only	be	unique	among	all	
flows	but	also	among	all	rules.	
Inputs:	

− Name:	flow	Name	(may	contain	only	le<ers,	digits	and	underscores,	not	starDng	with	
a	digit);	this	flow	name	should	be	unique	

− text:	opDonal,	brief	descripDon	of	the	flow	
− R:	Rule	object,	Flow	object	or	R	(flow	structure)	object	(sequence,	disjuncDon	or	

negaDon)	
Outputs:	

	32



− Flow:	resulDng	Flow	object	

SGI Flow Info 

The	SGI Flow Info component	provides	the	flow	name,	flow	descripDon,	flow	specificaDon	
and	the	list	of	rules	that	form	part	of	this	specificaDon	of	the	flow.	
Inputs:	

− Flow:	Flow	object	
Outputs:	

− Name:	flow	Name	
− text:	flow	descripDon		
− nota4on:	formal,	textual	flow	specificaDon	

Flow applica=on 
The	SortalGI	plug-in	disDnguishes	two	flow	applicaDon	components:	the	first	one,	SGI Apply 
Flow,	accepts	any	flow	or	flow	structure,	and	returns	only	a	single	outcome,	while	the	
second	one,	SGI Apply All Flow,	accepts	any	flow	but	not	any	flow	structure,	and	returns	all	
outcomes	(as	can	be	determined	through	backtracking).		

For	either	components,	every	resulDng	shape	is	accompanied	by	a	translaDon	vector.	In	the	
case	of	SGI Apply Flow,	the	translaDon	vector	allows	the	resulDng	shape	to	be	visualized	
aside	from	the	original	shape,	along	the	X-axis.	In	the	case	of	SGI Apply All Flow,	the	
translaDon	vectors	allow	the	resulDng	shapes	to	be	visualized	one	above	the	other,	along	the	
Y-axis,	and	aside	from	the	original	shape,	along	the	X-axis.	The	extent	of	the	translaDon	
vector	is	specified	by	the	displacementX	and	displacementY	values	provided	to	the	SGI Setup	
component	or,	if	no	value	is	provided,	by	the	bounding	box	of	the	original	shape	(see	secDon 
5. Star=ng on a SortalGI-based parametric model).	

SGI Apply Flow 

The	SGI Apply Flow	component	determines	a	single	outcome	from	the	applicaDon	of	a	flow	
or	flow	structure	(sequence,	disjuncDon	or	negaDon)	onto	a	shape.	
For	each	rule	in	the	flow	(or	flow	structure),	if	there	are	mulDple	potenDal	rule	applicaDons,	
by	default	a	random	selecDon	is	made,	although	this	behavior	can	be	overridden	by	serng	
the	random	parameter	input	to	False,	in	which	case	the	first	rule	applicaDon	is	always	
selected.	The	la<er	ensures	the	same	result	each	Dme	the	flow	is	applied	to	the	same	shape.	
Inputs:	

− Flow:	Flow	object	or	R	(flow	structure)	object	(sequence,	disjuncDon	or	negaDon)	
− Shape:	Shape	object	to	apply	the	flow	(or	flow	structure)	to	
− random:	opDonal	Boolean	value	indicaDng	whether	a	random	(True,	default)	or	fixed	

(False)	selecDon	is	made	from	among	the	applicaDons	for	one	rule;	a	fixed	selecDon	
yields	the	same	result	each	Dme	the	component	is	executed	

− verbose:	opDonal	Boolean	value	specifying	whether	the	process	should	be	verbally	
recorded	(default	is	True)	

− runIt:	Boolean	value	specifying	whether	to	run	this	component	(default	is	False)	
Outputs:	

	33



− out:	verbal	descripDon	of	the	flow	applicaDon	process,	if	the	verbose	input	parameter	
is	set	to	True	

− Shape:	Shape	object	resulDng	from	the	flow	(or	flow	structure)	applicaDon	
− T:	translaDon	vector	to	allow	the	shape	to	be	drawn	next	to	the	original	shape,	along	

the	X-axis	

SGI Apply All Flow 

The	SGI Apply All Flow	component	determines	all	outcomes	(as	can	be	determined	through	
backtracking)	from	the	applicaDon	of	a	flow	onto	a	shape.	
For	each	rule	in	the	flow,	if	there	are	mulDple	potenDal	rule	applicaDons,	by	default	a	
random	selecDon	is	made,	although	this	behavior	can	be	overridden	by	serng	the	random	
parameter	input	to	False,	in	which	case	the	first	rule	applicaDon	is	always	selected.	The	la<er	
ensures	the	same	result	each	Dme	the	flow	is	applied	to	the	same	shape.	

Inputs:	
− Flow:	Flow	object	
− Shape:	Shape	object	to	apply	the	flow	to	
− random:	opDonal	Boolean	value	indicaDng	whether	a	random	(True,	default)	or	fixed	

(False)	selecDon	is	made	from	among	the	applicaDons	for	one	rule;	a	fixed	selecDon	
yields	the	same	result	each	Dme	the	component	is	executed	

− verbose:	opDonal	Boolean	value	indicaDng	whether	the	process	should	be	verbally	
recorded	(default	is	True)	

− runIt:	Boolean	value	specifying	whether	to	run	this	component	(default	is	False)	
Outputs:	

− out:	verbal	descripDon	of	the	flow	applicaDon	process,	if	the	verbose	input	parameter	
is	set	to	True	

− Shapes:	list	of	Shape	objects	corresponding	to	the	number	of	flow	applicaDons	found	
− n:	number	of	matches	found,	corresponds	to	the	length	of	the	lists	Shapes	and	T	
− T:	list	of	translaDon	vectors	to	allow	the	shapes	to	be	drawn	one	above	the	other,	

along	the	Y-axis,	and	next	to	the	original	shape,	along	the	X-axis	

	34



11. Specifying shape descrip=ons 
We	use	the	term	shape	descripDon	to	disDnguish	it	from	a	rule	descripDon.	The	la<er	is	a	
textual	descripDon	that	is	used	to	explain	the	purpose	of	a	rule	to	the	user;	it	is	not	
interpreted	by	the	SortalGI	engine.	Shape	descripDons,	on	the	other	hand,	follow	a	strict	
format	that	allows	them	to	be	interpreted	and	matched	by	the	SortalGI	engine	(see	Appendix 
A. A formal nota=on for shape descrip=ons	for	an	explicaDon	of	the	format).	

Parametric shape descrip=ons 
Shape	descripDons	are	parametric	in	nature,	that	is,	when	adopted	as	the	leK-hand-side	(lhs)	
of	a	(shape)	descripDon	rule,	a	shape	descripDon	may	contain	one	or	more	parameters	that	
can	be	matched	onto	parts	of	the	descripDon	under	invesDgaDon.	When	adopted	as	the	
right-hand-side	(rhs)	of	a	(shape)	descripDon	rule,	a	shape	descripDon	may	also	contain	
parameter	references	although	the	parameters	should	have	already	been	specified	in	the	
corresponding	lhs,	such	that	the	value	of	the	parameter	reference	in	the	rhs	can	be	taken	
from	the	matching	of	the	lhs.	Obviously,	shape	descripDons	that	do	not	form	part	of	a	shape	
descripDon	rule	should	not	contain	any	parameters	or	parameter	references,	otherwise	
matching	will	necessarily	fail.	

Example	(‘descripDon’	is	the	shape	descripDon	type	and	‘a’	is	a	parameter):	
description: 4.0 
description: a 

Shape descrip=on types 
A	single	shape	or	rule	may	specify	more	than	one	descripDon.	For	example,	one	shape	
descripDon	may	be	used	to	constrain	rule	applicaDon	while	another	may	serve	to	count	the	
number	of	rule	applicaDons	performed	on	the	shape.	In	order	to	be	able	to	correctly	match	
shape	descripDons	belonging	to	the	lhs	and	the	rhs	of	the	rule,	shape	descripDons	must	be	
typed,	that	is,	each	shape	Description	that	is	not	used	as	an	a<ribute	to	a	point	must	be	
preceded	by	its	Type	(type	and	descripDon	are	separated	by	a	colon).		Shape	descripDon	
types	must	be	prescribed	in	the	SGI Setup	component	(see	secDon 5. Star=ng on a SortalGI-
based parametric model).	
MulDple	shape	descripDons	may	share	the	same	descripDon	type.	These	can	be	collected	in	a	
single	line,	using	a	verDcal	bar	to	separate	the	various	descripDons.	

Examples:	
min_width: 10 
colors: “black” | “white” 

SGI Descrip=on 

The	SGI Description component	composes	one	or	more	shape	descripDons	from	a	number	
of	descripDon	types	and	descripDon	values.	If	a	single	type	is	input	with	a	list	of	values,	then	
the	values	are	all	assigned	to	the	same	type.	Otherwise,	each	type	is	assigned	a	single	value	
and	if	there	is	an	insufficient	number	of	values,	then	the	last	one	is	repeated.	
Inputs:	

− Type:	one	or	more	shape	descripDon	Types	
− D:	one	or	more	Descriptions	(or	parameters),	without	Type	specificaDon	

Outputs:	
− Descrip4on:	Description	text	or	list	thereof,	including	the	Type specificaDon	

	35



Descrip=on literals 
Literal	values	in	descripDons	may	be	numbers,	double	quoted	strings	or	predefined	
keywords.	The	la<er	include	e,	nil,	pi,	true	and	false.	e	and	nil	are	equivalent	and	represent	
an	‘empty’	enDty.	Depending	on	the	context,	the	‘empty’	enDty	may	be	interpreted	to	
denote	zero,	an	empty	string	or	an	empty	tuple.	The	literals	pi,	true	and	false	denote	the	
numbers	‘π’,	1	and	0,	respecDvely.	

Examples:	
status: true 
list: e 

SGI Descrip=on Literals 

The	SGI Description Literals selector	allows	to	select	from	a	list	of	literals	for	shape	
descripDons.	

Descrip=on tuples 
While	shape	descripDons	are	specified	in	textual	form,	they	can	be	structured	as	nested	lists/
tuples.	Tuples	should	be	enclosed	using	either	parentheses,	angle	brackets	or	square	
brackets.	A	top-level	tuple	may	have	the	enclosing	brackets	omi<ed.	The	enDDes	within	a	
tuple	should	be	separated	using	either	commas	or	semicolons.	Again,	a	top-level	tuple	may	
have	the	separaDng	marks	omi<ed.	

Examples:	
segment: <(0, 0), (1, 0)> 
cubes: (“l:”, 10, “c:”, (0, 0), “r:”, 0) (“l:”, 10, “c:”, (5, 5), “r:”, 45) 

SGI Tuple Markings 

The	SGI Description Markings selector	allows	to	select	from	a	list	of	Markings	for	descripDon	
tuples.	

SGI Descrip=on Tuple 

The	SGI Description Tuple component	composes	a	descripDon	tuple	from	a	list	of	values	and	
the	specified	markings	(or	none).	
Inputs:	

− Ds:	list	of	Descriptions	as	tuple	elements	
− Marking:	tuple	Marking,	either	parentheses,	angle	brackets	or	square	brackets	to	

enclose	the	tuple,	and	commas	or	semicolons	as	separators	(either	‘(,)’,	‘<,>’,	‘[,]’,	‘(;)’,	
‘<;>’,	‘[;]’);	alternaDvely,	the	enclosing	marks	can	be	omi<ed	with	spaces	as	separators	
(‘’,	default)	

Outputs:	
− tupleD:	Description	tuple	as	text	

Descrip=on parameters 
A	descripDon	parameter	is	a	variable	term	that	is	specified	by	an	idenDfier	(any	sequence	of	
le<ers,	digits	and/or	underscores	starDng	either	with	a	le<er	or	underscore)	and	embedded	

	36



in	the	lhs	of	a	descripDon	rule.	Under	rule	applicaDon,	the	parameter	will	be	matched	to	a	
literal	or	a	tuple.	If	the	parameter	forms	part	of	a	string	expression	(see	String expressions	
below),	this	literal	can	be	any	part	of	a	literal	string.	If	the	parameter	forms	part	of	a	tuple,	it	
matches	a	specific	element	of	the	tuple,	unless	it	is	signified	by	a	kleene	star	(‘*’)	or	a	kleene	
plus	(‘+’),	in	which	case	it	can	match	any	subsequence	of	elements	of	the	tuple,	respecDvely,	
including	or	excluding	an	empty	subsequence.	The	use	of	a	kleene	star	or	kleene	plus	
signifier	allows	for	the	matching	of	variable	length	tuples.	

Examples:	
fixed_length: <“Fixed”, var1> <var2, var3> var4 
variable_length: (0, 0) (x1, y1) remainder* 

Parameter condi=onals 
Any	descripDon	parameter	may	be	specified	a	condiDonal	that	constrains	the	possible	values	
of	this	parameter.	The	condiDonal	must	follow	the	parameter	and	both	must	be	separated	
only	by	a	quesDon	mark	(‘?’).	The	condiDonal	may	be	either	enumeraDve	or	equaDonal,	or	
specify	a	range.	An	enumeraDve	condiDonal	explicates	a	finite	set	of	possible	values.	This	set	
must	contain	either	all	numbers	or	all	(double	quoted)	strings,	and	the	set	must	be	enclosed	
using	curly	brackets.	An	equaDonal	condiDonal	specifies	a	numeric	equality	or	inequality	on	
the	parameter,	in	the	form	of	a	condiDonal	operator	(‘=’,	‘<>’,	‘<’,	‘<=’,	‘>’,	or	‘>=’)	and	
operand.	The	operand	must	be	either	a	number	or	a	numerical	expression	(see	Numerical 
expressions	below)	operaDng	on	numbers,	parameters—previously	defined—,	funcDons	(see	
Func=ons below)	and/or	references	(see	References	below).	Neither	strictly	enumeraDve,	nor	
strictly	equaDonal,	it	is	possible	to	specify	a	range	of	numeric	values	using	a	minimum	and	
maximum	value	enclosed	in	square	brackets.	

Examples:	
yard: value?{nil, “default”} 
rooms: <nrooms?>2, rooms> 
range: a?[0, 10] 

SGI Condi=onal Operators 

The	SGI Conditional Operators selector	allows	to	select	from	a	list	of	condiDonal	Ops	for	
shape	descripDons.	

SGI Condi=onal Expression 

The	SGI Conditional Expression component	composes	a	condiDonal	expression	as	a	
concatenaDon	of	a	parameter	or	funcDon,	a	quesDon	mark	(‘?’),	a	condiDonal	operator	(‘=’,	
‘<>’,	‘<’,	‘<=’,	‘>’,	or	‘>=’)	and	an	argument.	If	the	operator	is	specified	as	‘[]’,	the	operator	is	
omi<ed	and	the	argument,	which	must	be	a	pair	of	numeric	values,	enclosed	by	square	
brackets.	If	the	operator	is	specified	as	‘{}’,	the	operator	is	omi<ed	and	the	argument,	which	
must	be	a	list	of	all	numbers	or	all	(double	quoted)	strings,	enclosed	by	braces.	
Inputs:	

− D:	Description	part,	either	a	parameter	or	funcDon	
− Op:	condiDonal	Op	(‘=’,	‘<>’,	‘<’,	‘<=’,	‘>’,	‘>=’,	‘[]’,	‘{}’)	
− value:	single	number	or	numerical	expression;	a	pair	of	numeric	values;	or	a	list	of	all	

numbers	or	all	(double	quoted)	strings	

	37



Outputs:	
− condi4onD:	condiDonal	Description	expression	as	text	

Numerical expressions 
A	numerical	expression	can	be	embedded	in	a	parameter	condiDonal	(in	the	lhs	of	a	
descripDon	rule)	or	in	the	rhs	of	a	descripDon	rule.	A	numerical	expression	can	operate	on	
literal	keywords,	numbers,	numerical	funcDons	(see	Func=ons	below),	parameters	and	
references	(see	References	below).	Numerical	expressions	may	include	the	operators	plus	
(‘+’),	minus	(‘–‘),	Dmes	(‘*’),	divided-by	(‘/’),	modulo	(‘%’)	and	to-the-power-of	(‘^’),	with	the	
usual	operator	precedence	rules	applying	and	the	use	of	parentheses	to	override	these	rules	
where	necessary.	Other	operaDons	are	available	in	the	form	of	numerical	funcDons.	

Example	(‘vol’,	‘radius’	and	‘length’	specify	parameter	references)	:	
volume: vol – pi^2 * radius * (length / 2)^2 + 4 / 3 * pi * (length / 2)^3 

String expressions 
A	string	expression	in	the	lhs	of	a	descripDon	rule	enables	the	idenDficaDon	of	substrings	in	
the	matching	process.	Here,	a	string	expression	is	a	concatenaDon	of	literals	and	parameters	
(with	or	without	condiDonal).	A	parameter	can	match	any	substring,	condiDoned	by	the	
literal	components	(and	the	condiDonal,	if	present).	A	concatenaDon	of	two	parameters,	
without	a	literal	separaDng	the	two	parameters,	would	not	be	possible,	unless	the	first	
parameter	has	an	enumeraDve	condiDonal.	
A	string	expression	in	the	rhs	of	a	descripDon	rule	can	include	literals,	parameter	references		
(see	References	below),	numerical	expressions	(enclosed	in	parentheses)	and	funcDons	
returning	either	numbers	or	strings	(see	Func=ons	below).	The	result	is	the	concatenaDon	of	
all	components	upon	their	evaluaDon	into	literal	numbers	or	strings.	

Examples	(the	two	lines	below	may	form	the	lhs	and	rhs	of	the	same	descripDon	rule):	
be: be1 be20.“, ”.be21.“-rafter beam in front, ”.be22.“-rafter beam in back” “with ”.c?=(be21 + 
be22).“ columns” 
be: be1 be20.“, ”.be21.“-rafter beam abutting ”.be22 “with ”.(c + 1).“ columns” 

Tuple expressions 
Tuple	expressions	allow	one	to	append	or	prepend	an	enDty	to	a	tuple,	join	two	tuples	or	
add	two	tuples.	The	operaDons	to	append,	prepend	and	join	all	take	the	same	format:	two	
operands	separated	by	a	space.	The	appropriate	interpretaDon	is	arrived	at	by	looking	at	the	
structure	of	the	two	operands.	If	the	enDty	shares	a	similar	“structure”	with	the	first	element	
of	the	tuple,	e.g.,	both	are	numbers	or	both	are	a	tuple	of	similar	structure,	then	the	enDty	
will	be	appended	or	prepended	to	the	tuple	depending	on	its	posiDon	with	respect	to	the	
tuple.	If	both	operands	are	(nested)	tuples,	and	the	elements	of	both	tuples	have	the	same	
structure,	then	a	join	operaDon	will	be	assumed,	combining	the	elements	from	both	tuples	in	
a	new,	single	tuple.	If	no	structural	similarity	exists,	then	the	expression	will	instead	be	
interpreted	as	a	tuple	omirng	enclosing	brackets	and	separator.	
Adding	two	tuples	adds	the	respecDve	enDDes:	if	both	enDDes	are	numbers	they	are	
summed;	if	both	enDDes	are	strings	they	must	be	idenDcal;	if	both	enDDes	are	tuples	and	
have	the	same	structure,	then	addiDon	is	applied	recursively.	

Examples	(the	la<er	also	includes	a	funcDon):	
position: a + (1, 0) 

	38



positions: a last(a) + (0, 1) 

SGI Numerical Operators 

The	SGI Numerical Operators selector	allows	to	select	from	a	list	of	numerical	Ops	for	shape	
descripDons.	

SGI Expression 

The	SGI Expression component	composes	a	string	or	numeric	expression	from	a	list	of	
inputs,	using	the	string	concatenaDon	operator	(‘.’)	or	a	numerical	operator,	respecDvely.	
Inputs:	

− Ds:	list	of	values	to	be	concatenated	in	the	expression	(textual	or	numeric)	
− Op:	(numerical)	Op;	default	is	‘.’	for	a	string	expression;	‘+’,	‘–‘,	‘*’,	‘/’,	‘%’,	‘^’	are	

accepted	for	a	numeric	expression	
Outputs:	

− expressionD:	Description	expression	as	text	

Func=ons 
FuncDons	allow	for	addiDonal	operaDons	on	numbers,	texts/strings	and	tuples,	or	a	
combinaDon	thereof.	A	funcDon	returns	a	single	value	from	any	one	of	these	three	enDty	
types.	Strictly	numerical	funcDons	include	sqrt,	sin,	cos	and	tan,	asin,	acos	and	atan,	taking	a	
single	number	as	argument	and	returning	a	number.	FuncDons	operaDng	on	texts/strings	
include	determining	the	length	of	a	string	and	determining	a	left	and	right	substring,	with	the	
length	of	the	substring	specified	as	an	addiDonal	argument	to	the	funcDon.	
FuncDons	operaDng	on	tuples	include	determining	the	length	of	a	tuple,	retrieving	the	first	or	
last	element	of	a	tuple,	or	any	element	(item)	by	its	index,	the	minimum	(min)	and	maximum	
(max)	value	inside	a	tuple,	retrieving	a	tuple	of	only	unique	elements,	a	tuple	of	pairs	
extracDng	consecuDve	elements	pairwise	from	the	operand	tuple,	a	tuple	of	pairs	(segments)	
such	that	the	ith	pair	is	made	up	of	the	ith	and	(i+1)th	elements	of	the	operand	tuple,	a	tuple	
of	tuples	idenDfying	loops	in	the	operand	tuple	and	a	tuple	of	tuples	represenDng	an	
adjacencies	matrix.	The	la<er	funcDon	takes	two	arguments,	a	tuple	of	‘enclosures’	and	a	
tuple	of	‘connecDng’	elements.	
Tuples	of	numbers	can	be	considered	as	vectors,	currently	only	vectors	of	length	two	or	three	
are	considered.	FuncDons	on	vectors	require	the	different	vectors	to	have	the	same	length.	
These	funcDons	include	determining	the	magnitude	(mag)	of	a	vector	or	the	distance	(also	
mag)	or	angle	between	two	vectors,	adding	(vectoradd)	or	subtracDng	(vectorsubstract)	two	
vectors,	taking	the	dotproduct	or	crossproduct	of	two	vectors	or	scaling	a	vector	by	a	number	
(vectorscale).	
Finally,	a	funcDon	to	generate	a	random	number	takes	as	input	(a	tuple	of)	two	or	three	
numbers,	with	the	first	two	specifying	the	range	and	the	opDonal	third	one	the	step.	More	
informaDon	on	funcDons	is	provided	in	Appendix B. Descrip=on func=ons.	

Examples:	
positions: a (random(0,10,1), 0) 

SGI Numeric Func=ons  

	39



The	SGI Numeric Functions selector	allows	to	select	from	a	list	of	numeric	Functions	for	
shape	descripDons.	

SGI Text Func=ons  

The	SGI Text Functions selector	allows	to	select	from	a	list	of	text	Functions	for	shape	
descripDons.	

SGI Tuple Func=ons  

The	SGI Tuple Functions selector	allows	to	select	from	a	list	of	tuple	Functions	(omirng	
vector	funcDons)	for	shape	descripDons.	

SGI Vector Func=ons  

The	SGI Vector Functions selector	allows	to	select	from	a	list	of	vector	Functions	for	shape	
descripDons.	

SGI Func=on Concat 

The	SGI Function Concat component	returns	a	funcDonal	descripDon	expression	that	is	a	
concatenaDon	of	a	funcDon	and,	within	parentheses,	its	arguments	(see	Appendix B. 
Descrip=on func=ons).	
Inputs:	

− Func4on:	descripDon	Function	
− Ds:	one	or	more	Description	arguments	to	the	funcDon,	each	argument	either	a	

number,	a	text,	a	descripDon	or	a	tuple	of	these	
Outputs:	

− func4onD:	funcDonal	Description	expression	as	a	concatenaDon	of	the	funcDon	and,	
within	parentheses,	its	arguments	

References 
We	disDnguish	three	kinds	of	references.	Firstly,	parameter	references	are	variable	terms	in	
the	rhs	of	a	descripDon	rule,	which	reference	variable	terms	(parameters)	in	the	lhs	of	the	
same	(or	another)	descripDon	rule.	The	value	of	the	parameter	reference	in	the	rhs	is	the	
value	of	the	same	parameter	in	the	lhs	upon	the	matching	of	the	lhs.	
Secondly,	a	descripDon	reference	is	similar	to	a	parameter	reference	but	references	a	
variable	term	in	another	shape	descripDon	(that	is	part	of	the	same	rule).	In	such	case,	the	
parameter	must	be	preceded	by	the	descripDon	type	in	order	to	idenDfy	the	appropriate	
descripDon	and	parameter.	AlternaDvely,	rather	than	referencing	a	specific	parameter,	the	
enDre	value	of	the	descripDon	can	be	referenced	using	the	term	value.	The	same	applies	to	
descripDons	used	within	a	color	a<ribute	specificaDon	within	a	shape	rule.	
Finally,	a	shape	reference	similarly	references	data	from	the	shape	rule	component	of	the	
rule.	A	shape	reference	may	take	one	of	two	forms.	Firstly,	shape	elements	can	be	referenced	
by	the	element	type	(see Shape element types	below);	however,	referencing	a	unique	
element	will	only	work	if	there	is	only	one	element	of	the	specific	type,	otherwise	the	
reference	will	be	ambiguous.	Otherwise,	the	element	can	be	disambiguated	by	addiDonally	
specifying	its	a<ribute	label	(or	descripDon),	provided	the	element	has	an	a<ribute	and	the	
a<ribute	label	is	unique	(see	example	below).	Secondly,	spaDal	elements	can	be	tagged	in	
the	shape	rule.	SpaDal	element	tags	can	be	understood	as	a<ributes	to	the	elements,	similar	

	40



to	labels	(tags	are	recognized	by	the	‘#’	symbol	preceding	the	tag	idenDfier).	However,	
different	from	a<ributes,	tags	are	parDcular	to	the	rule	in	quesDon	and	only	subsist	within	
the	rule	matching	and	applicaDon	process	of	this	rule.	As	such,	tags	are	not	considered	
a<ributes;	within	a	shape	descripDon,	the	tag	solely	serves	to	idenDfy	the	spaDal	element	
the	descripDon	is	referencing.	

Example	querying	the	posiDons	of	two	points	with	given	labels:	
constraint: a?>=mag(point3D.value:plabelD.value=”1”, point3D.value:plabelD.value =”2”) 
constraint: a?>=mag(#pt1.value, #pt2.value) 

SGI Type Proper=es  

The	SGI Type Properties component	retrieves	the	list	of	property	names	for	a	spaDal	type	
(see	Shape element types and their available proper=es	below),	and	returns	each	name	
concatenated	to	the	appropriate	element	type	or,	if	specified,	an	element	tag.	This	
combinaDon	can	be	used	in	a	descripDon	rule	to	retrieve	the	property	value.	The	element	
type	is	dependent	on	the	spaDal	type	and	whether	it	applies	to	a	non-parametric	(default)	or	
parametric-associaDve	rule.	It	can	be	addiDonally	specified	to	apply	to	an	element	from	the	
leK-hand-side	(default)	or	right-hand-side	of	the	rule.	
Inputs:	

− spa4alType:	spatialType	(‘point’,	‘line	segment’,	‘plane	segment’,	‘circle’,	‘ellipse’,	
‘circular	arc’	or	’quadraDc	Bezier’)	

− for_pRule:	Boolean	value	specifying	whether	the	element	type	refers	to	a	parametric-
associaDve	(True)	or	non-parametric	rule	(False,	default)	

− of_rhShape:	Boolean	value	specifying	whether	the	element	will	be	part	of	the	right-
hand-side	(True)	or	leK-hand-side	(False,	default)	of	the	rule	

− Tag:	opDonal	element	Tag	
Outputs:	

− propertyDs:	list	of	shape	properDes	as	Descriptions,	in	the	form	of	concatenaDons	of	
element	Tag/Type	and	property	names	for	a	spatialType	

SGI Descrip=on Reference  

The	SGI Description Reference component	returns	a	descripDon	reference	expression	that	is	
a	concatenaDon	of	a	shape	(a<ribute)	descripDon	type	(or	a<ribute	type,	e.g.,	‘color’)	and	
the	specified	parameter	or,	otherwise,	the	term	‘value’.	The	resulDng	expression	references	
the	parameter	(if	specified)	or	value	of	a	shape	descripDon	or	shape	(or	color)	a<ribute	
descripDon.	
Inputs:	

− sType:	either	a	descripDon	Type	or	spatialType	(‘point’,	‘line	segment’,	‘plane	
segment’,	‘circle’,	‘ellipse’,	‘circular	arc’	or	’quadraDc	Bezier’)	

− aXtype:	opDonal	atttype	(‘labelD’	or	‘color’)	
− parameter:	opDonal	parameter	

Outputs:	
− referenceD:	Description	expression	referencing	the	parameter	(if	specified)	or	value	

of	a	shape	descripDon	or	shape	(or	color)	a<ribute	descripDon	

	41



SGI Condi=onal Reference  

The	SGI Conditional Reference component	composes	a	condiDonal	reference	as	a	
concatenaDon	of	a	(main)	descripDon	reference	or	shape	property,	a	colon	(‘:’),	a	(auxiliary)	
descripDon	reference	or	shape	property,	a	condiDonal	operator	(‘=’,	‘<>’,	‘<’,	‘<=’,	‘>’,	or	‘>=’)	
and	an	argument.	The	argument	should	either	be	a	number,	a	vector	or	a	string.	The	
resulDng	expression	constrains	the	main	reference	or	property	by	its	relaDon	to	the	auxiliary	
shape	(a<ribute)	descripDon	or	spaDal	type	and	the	condiDon	on	the	(parameter)	value	of	
this	auxiliary	reference.	For	example,	in	the	case	of	mulDple	line	segments,	the	property	
value	of	a	specific	line	segment	can	be	idenDfied	based	on	the	value	of	its	shape	a<ribute	
descripDon	by	specifying	a	condiDon	on	the	shape	a<ribute	descripDon.	
Inputs:	

− referenceD:	main	Description	reference	or	shape	property	
− auxRefD:	auxiliary	Description	reference	or	shape	property	
− Op:	condiDonal	Op	(‘=’,	‘<>’,	‘<’,	‘<=’,	‘>’,	or	‘>=’,	‘[]’,	‘{}’)	
− value:	numeric,	vector	or	quoted	string	value	

Outputs:	
− condi4onD:	condiDonal	Description	reference	

Shape element types and their available proper=es 
Every	spaDal	type,	except	for	circular	arcs,	is	idenDfied	by	two	names.	The	first	one	should	be	
used	within	non-parametric	rules	and	the	second	within	parametric-associaDve	rules	(pRule).	
Note	that	circular	arcs	are	not	yet	available	within	parametric-associaDve	rules	and,	if	
specified,	will	be	ignored.	

type name property output value

points point3D value vector	tuple* posiDon

pointP3D

line	segments lineSeg3D root 

direction 
unitDir 
start 
end 
midpoint 
length 
squareLength 

oDirection 
oStart 
oEnd

vector	tuple*	

vector	tuple*	
vector	tuple*	
vector	tuple*	
vector	tuple*	
vector	tuple*	
number	
number	

vector	tuple*	
vector	tuple*	
vector	tuple*

root	point	(nearest	point	
to	the	origin)	
direcDon	vector	
unit	direcDon	vector	
start	point	
endpoint	
midpoint	
line	length	
square	value	of	line	
length	
original	direcDon	vector†	
original	start	point†	
original	endpoint†

lineSegP3D

plane	segments planeSeg3D normal 
area 

vector	tuple*	
number	

normal	vector	
plane	area	

	42



planesegP3D
area 
outer

number	
tuple	of	vector	
tuples*

plane	area	
list	of	outer	boundary	
verDces

circles circle3D normal 
center 
radius 
diameter 
circumference 
area

vector	tuple*	
vector	tuple*	
number	
number	
number	
number

plane	normal	vector	
center	point	
radius	
diameter	
circumference	
area	of	the	circle

circleP3D

ellipses ellipse3D normal 
center 
foci 

radii 

area

vector	tuple*	
vector	tuple*	
tuple	of	vector	
tuples*	
tuple	of	numbers	

number

plane	normal	vector	
center	point	
list	of	focal	points	

list	of	longer	and	shorter	
radii	
area	of	the	ellipse

ellipseP3D

circular	arcs arc3D normal 
center 
radius 
diameter 
circumference 
start 
end 
length 
angle 

area

vector	tuple*	
vector	tuple*	
number	
number	
number	
vector	tuple*	
vector	tuple*	
number	
number	

number

plane	normal	vector	
circle	center	point	
circle	radius	
circle	diameter	
circle	circumference	
endpoint	(ccw)	
endpoint	(cw)	
arc	length	
angle	covered	by	the	arc	
(in	radians)	
area	covered	by	the	arc

quadraDc	Bezier	
curves

bezier3D normal 
start 
controlPoint 
end 
vertex

vector	tuple*	
vector	tuple*	
vector	tuple*	
vector	tuple*	
vector	tuple*

plane	normal	vector	
1st	control	point	
2nd	control	point	
3rd	control	point	
maximum	or	minimum	of	
the	curve

bezierP3D

labels/	
descripDons	as	
spaDal	element	
a<ribute	

for	points,		
line	segments,	
plane	segments,	
circles,	ellipses,	
circular	arcs	and	
quadraDc	Bezier	
curves,	
respecDvely

pLabelD value string label	or	descripDon	string

lLabelD

plLabelD

cLabelD

eLabelD

aLabelD

bLabelD

	43



*A	vector	tuple	is	a	tuple	of	two	or	three	numbers.	
†The	direcDon	vector	of	a	line	segment	is	a	normalized	vector:	it	has	a	posiDve	X-coordinate	(or	a	
posiDve	Y-coordinate	if	the	X-coordinate	is	0;	or	a	posiDve	Z-coordinate	if	both	the	X	and	Y-
coordinates	are	0).	The	start	and	end	points	of	a	line	segment	are	the	respecDve	endpoints	of	the	line	
segment	with	the	normalized	direcDon	vector.	The	original	direcDon	vector,	and	original	start	and	end	
points,	reflect	the	situaDon	before	normalizaDon,	that	is,	how	the	line	segment	was	created.	Note	
that	the	original	direcDon	vector	loses	its	meaning	when	line	segments	are	operated	upon	(e.g.,	
combined	with	another	line	segment).	

colors	as	spaDal	
element	
a<ribute	

for	line	
segments,	plane	
segments,	
circles,	ellipses,	
circular	arcs	and	
quadraDc	Bezier	
curves,	
respecDvely

lColor depending	on	
colorMode:	
if	‘graytone’:	
    value 

else:	
    value 

    RGB

depending	on	
colorMode:	
if	‘graytone’:	
				number	

else:	
				tuple	of	integers	

				string

depending	on	colorMode:	
if	‘graytone’:	
				between	0	(white)	and	
				255	(black)	
else:	
				R,	G,	B	and	alpha	
values	
				hexadecimal	string	in		
				format	‘0xRRGGBB’

plColor

cColor

eColor

aColor

bColor

	44



12. Specifying predicates 
A	predicate	serves	to	express	a	special	condiDon	on	the	applicaDon	of	a	rule.	Such	condiDon	
cannot	simply	be	explicated	within	the	leK-hand-side	shape.	As	an	example,	a	predicate	may	
specify	that	a	polygonal	area	must	be	devoid	of	any	spaDal	elements.	Most	predicates	are	
only	applicable	to	parametric-associaDve	rules,	however,	a	few	predicates	are	also	applicable	
to	non-parametric	rules.	These	are,	specifically,	the	void,	inside	and	outside	predicates.	

SGI Void Predicate 

The	SGI Void Predicate component	creates	a	void	predicate	from	one	or	more	polygonal	
geometries	and,	opDonal,	spaDal	types,	and	an	opDonal	reference	point.	It	is	applicable	to	
both	non-parametric	and	parametric-associaDve	rules.	The	void	predicate	sDpulates	that	a	
given	polygonal	area	is	to	contain	no	spaDal	elements	(points,	line	segments,	plane	
segments)	at	all	or	of	the	specified	type;	spaDal	elements	may	coincide	with	the	boundary.	It	
must	be	noted	that	while	the	predicate	explicates	the	verDces	by	their	coordinates,	in	the	
case	of	a	parametric-associaDve	rule,	they	must	necessarily	coincide	with	any	of	the	line	
segments	in	the	lhs	shape	in	order	for	the	verDces	to	be	recognized	via	the	parametric-
associaDve	matching	mechanism.	
If	the	numbers	of	inputs	are	the	same,	it	is	assumed	they	correspond;	otherwise,	all	spaDal	
types	specified	are	considered	for	each	geometry,	unless	they	come	in	the	form	of	a	list	of	
lists.	In	the	la<er	case,	surplus	spaDal	type	inputs	are	ignored.	
Inputs:	

− Polygon:	polygonal	geometry	(one	or	more);	may	be	expressed	as	points,	line	
segments,	closed	polyline,	flat	surface	or	boundary	representaDon	

− spa4alType:	opDonal	list	of	spatialTypes	(‘point’,	‘line	segment’,	‘plane	segment’,	
‘circle’,	‘ellipse’,	‘circular	arc’	or	’quadraDc	Bezier’)	

− for_pRule:	opDonal	Boolean	value	specifying	whether	the	element	type(s)	refers	to	a	
parametric-associaDve	(True)	or	non-parametric	rule	(False,	default);	only	considered	
if	a	spa4alType	is	specified	

− refP:	opDonal	reference	point;	if	specified,	the	geometry	will	be	considered	moved	
from	the	reference	point	to	the	origin	(assuming	the	same	reference	point	is	used	to	
similarly	move	the	leK-hand-side	shape	of	the	rule)	

Outputs:	
− Predicate:	Predicate	text	

SGI Inside Predicate 

The	SGI Inside Predicate component	creates	an	inside	predicate	from	one	or	more	polygonal	
geometries	and,	opDonal,	spaDal	types.	It	is	applicable	to	both	non-parametric	and	
parametric-associaDve	rules.	The	inside	predicate	sDpulates	that	all	spaDal	elements	(points,	
line	segments,	plane	segments)	of	the	specified	type	(if	specified)	matching	(part	of)	the	lhs	
shape	are	to	be	enDrely	contained	within	the	given	polygonal	area;	although,	spaDal	
elements	may	touch	or	coincide	with	the	boundary.	It	must	be	noted	that,	unlike	the	void	
predicate,	the	coordinates	of	the	verDces	are	taken	at	absolute	value	and	not	affected	by	any	
transformaDon	as	resulDng	from	the	matching.	

	45



If	the	numbers	of	inputs	are	the	same,	it	is	assumed	they	correspond;	otherwise,	all	spaDal	
types	specified	are	considered	for	each	geometry,	unless	they	come	in	the	form	of	a	list	of	
lists.	In	the	la<er	case,	surplus	spaDal	type	inputs	are	ignored	
Inputs:	

− Polygon:	polygonal	geometry;	may	be	expressed	as	points,	line	segments,	closed	
polyline,	flat	surface	or	boundary	representaDon	

− spa4alType:	opDonal	list	of	spatialTypes	(‘point’,	‘line	segment’,	‘plane	segment’,	
‘circle’,	‘ellipse’,	‘circular	arc’	or	’quadraDc	Bezier’)	

− for_pRule:	opDonal	Boolean	value	specifying	whether	the	element	type	refers	to	a	
parametric-associaDve	(True)	or	non-parametric	rule	(False,	default);	only	considered	
if	a	spa4alType	is	specified	

Outputs:	
− Predicate:	Predicate	text	

SGI Outside Predicate 

The	SGI Outside Predicate component	creates	an	outside	predicate	from	one	or	more	
polygonal	geometries	and,	opDonal,	spaDal	types.	It	is	applicable	to	both	non-parametric	and	
parametric-associaDve	rules.	The	outside	predicate	sDpulates	that	all	spaDal	elements	
(points,	line	segments,	plane	segments)	of	the	specified	type	(if	specified)	matching	(part	of)	
the	lhs	shape	are	to	be	enDrely	outside	of	the	given	polygonal	area;	although,	spaDal	
elements	may	touch	or	coincide	with	the	boundary.	It	must	be	noted	that,	unlike	the	void	
predicate,	the	coordinates	of	the	verDces	are	taken	at	absolute	value	and	not	affected	by	any	
transformaDon	as	resulDng	from	the	matching.	
If	the	numbers	of	inputs	are	the	same,	it	is	assumed	they	correspond;	otherwise,	all	spaDal	
types	specified	are	considered	for	each	geometry,	unless	they	come	in	the	form	of	a	list	of	
lists.	In	the	la<er	case,	surplus	spaDal	type	inputs	are	ignored	
Inputs:	

− Polygon:	polygonal	geometry;	may	be	expressed	as	points,	line	segments,	closed	
polyline,	flat	surface	or	boundary	representaDon	

− spa4alType:	opDonal	list	of	spatialTypes	(‘point’,	‘line	segment’,	‘plane	segment’,	
‘circle’,	‘ellipse’,	‘circular	arc’	or	’quadraDc	Bezier’)	

− for_pRule:	opDonal	Boolean	value	specifying	whether	the	element	type	refers	to	a	
parametric-associaDve	(True)	or	non-parametric	rule	(False,	default);	only	considered	
if	a	spa4alType	is	specified	

Outputs:	
− Predicate:	Predicate	text	

SGI Maxline Predicate  

The	SGI Maxline Predicate component	creates	a	maxline	predicate	from	one	or	more	line	
element	tags.	It	is	only	applicable	to	parametric-associaDve	rules.	The	maxline	predicate	
sDpulates	that	any	line	segment	matching	the	tagged	line	segment	must	use	its	full	extent	to	
match	the	line	segment.	
Inputs:	

− lineTag:	one	or	more	element	Tags	of	line	segments	
Outputs:	

− Predicate:	Predicate	text	

	46



SGI Bound Predicate 

The	SGI Bound Predicate component	creates	a	bound	predicate	from	one	or	more	line	
element	tags	and	Boolean	values	specifying	whether	the	respecDve	endpoint	of	the	line	
element	must	be	a	boundary	point	or	not.	It	is	only	applicable	to	parametric-associaDve	
rules.	The	bound	predicate	sDpulates	a	matching	line	to	be	bound	at	an	indicated	endpoint.	
It	is	similar	to	maxline	but	is	able	to	limit	the	line	from	a	specific	endpoint.	
Any	surplus	Boolean	values	are	ignored,	any	missing	values	are	considered	false;	unless	only	
a	single	value	is	specified,	in	which	case	it	is	copied.	Note	that	the	endpoints	of	the	tagged	
line	segment	will	iniDally	be	ordered	as	idenDfied	when	construcDng	the	line	segment,	but	
this	may	change	upon	manipulaDng	the	segment	(e.g.,	through	rule	applicaDon),	aKer	which	
the	endpoints	would	be	ordered	corresponding	their	coordinates	(first	X,	then	Y	and	finally	
Z).	
Inputs:	

− lineTag:	one	or	more	element	Tags	of	line	segments	
− atStart:	one	or	more	Boolean	values	specifying	whether	the	startpoint	of	the	

(respecDve)	line	segments	must	be	a	boundary	point	or	not	
− atEnd:	one	or	more	Boolean	values	specifying	whether	the	endpoint	of	the	

(respecDve)	line	segments	must	be	a	boundary	point	or	not	
Outputs:	

− Predicate:	Predicate	text	

SGI Shortest-Line Predicate  

The	SGI Shortest-Line Predicate component	creates	a	shortest	line	predicate	from	one	or	
more	line	element	tags.	It	is	only	applicable	to	parametric-associaDve	rules.	The	shortest	line	
predicate	sDpulates	that	the	line	segment	matching	the	tagged	line	must	be	the	shortest	line	
in	the	matching	shape.	In	the	case	of	mulDple	inputs,	the	matched	lines	idenDfied	as	the	
shortest	lines	must	all	have	the	same	length.	
Inputs:	

− lineTag:	one	or	more	element	Tags	of	line	segments	
Outputs:	

− Predicate:	Predicate	text	

SGI Longest-Line Predicate  

The	SGI Longest-Line Predicate component	creates	a	longest	line	predicate	from	one	or	
more	line	element	tags.	It	is	only	applicable	to	parametric-associaDve	rules.	The	longest	line	
predicate	sDpulates	that	the	line	segment	matching	the	tagged	line	must	be	the	longest	line	
in	the	matching	shape.	In	the	case	of	mulDple	inputs,	the	matched	lines	idenDfied	as	the	
longest	lines	must	all	have	the	same	length.	
Inputs:	

− lineTag:	one	or	more	element	Tags	of	line	segments	
Outputs:	

− Predicate:	Predicate	text	

	47



SGI Descrip=on Predicate 

The	SGI Description Predicate component	creates	a	descripDon	predicate	from	one	or	more	
condiDonal	descripDon	expressions	(see	secDon 11. Specifying shape descrip=ons).	As	the	
condiDonal	expression	may	reference	one	or	more	spaDal	element	properDes,	the	
descripDon	predicate	may	sDpulate	a	constraint	over	such	properDes.	The	descripDon	
predicate	is	only	applicable	to	parametric-associaDve	rules.	
Inputs:	

− condi4onD:	one	or	more	condiDonal	expression	Descriptions	
Outputs:	

− Predicate:	Predicate	text	

	48



13. Specifying direc=ves 
DirecDves	are	value	specificaDons	for	applying	a	parametric-associaDve	rule	that	cannot	be	
derived	from	or	expressed	within	the	right-hand-side	shape	of	the	rule.	As	an	example,	a	
direcDve	may	specify	the	distance	from	a	new	line	added	in	the	rhs	to	an	exisDng	point.	
DirecDves	are	only	applicable	to	parametric-associaDve	rules.	

SGI Point-on-Line Direc=ve  

The	SGI Point-on-Line Directive component	creates	a	point	on	line	direcDve	from	one	or	
more	target	and	line	element	tags	and	parameter	values.	Any	discrepancy	between	the	
numbers	of	inputs	is	resolved	by	copying	the	respecDve	last	value.	
The	point	on	line	direcDve	specifies	the	parameter	value	for	the	posiDon	of	a	new	point	on	
an	exisDng	line	segment,	with	respect	to	the	endpoints	of	the	line	with	respecDve	parameter	
values	0	and	1.	The	new	point	may	serve	as	the	endpoint	of	a	new	(target)	line	segment.	
The	parameter	value	can	be	explicated	as	a	numeric	value	between	0	and	1	or	as	a	
descripDon	enclosed	within	backward	quotes.	For	example,	the	descripDon	`random((0.3,	
0.7))`	prescribes	a	random	value	between	0.3	and	0.7.	
Inputs:	

− Tag:	one	or	more	element	Tags	of	line	segments	or	points	(rhs	shape)	
− lineTag:	one	or	more	element	Tags	of	line	segments	(lhs	(or	rhs)	shape)	
− valueD:	one	or	more	parameter	values,	each	either	a	numeric	value	or	a	Description	

(enclosed	within	backward	quotes)	
Outputs:	

− Direc4ve:	Directive	text	

SGI Distance Direc=ve 

The	SGI Distance Directive component	creates	a	distance	direcDve	from	one	or	more	target	
and	reference	element	tags	and	distance	values,	and	an	opDonal	direcDon	vector.	Any	
discrepancy	between	the	numbers	of	inputs	is	resolved	by	copying	the	respecDve	last	value.	
The	distance	direcDve	specifies	the	distance	from	a	new	spaDal	element	(line	or	point)	to	an	
exisDng	spaDal	element	(line	or	point).	There	are	4	possible	cases:	

− Line-line	distance:	the	new	line	must	be	parallel	to	the	exisDng	line;	a	direcDon	vector	
can	be	addiDonally	specified	to	indicate	the	direcDon	in	which	the	line	is	added.	The	
direcDon	vector	can	be	explicated	as	a	coordinate	tuple	or	as	a	descripDon	enclosed	
within	backward	quotes.	For	example,	the	descripDon	`#plane.normal`	prescribes	the	
normal	vector	of	a	tagged	plane	as	the	direcDon	vector.	

− Line-point	distance:	the	new	line	must	run	through	an	exisDng	point,	line	endpoint	or	
line	intersecDon	point;	the	distance	is	measured	perpendicular	from	the	line	to	the	
point	

− Point-line	distance:	the	new	point	must	be	on	another	exisDng	line	not	parallel	to	the	
reference	line;	the	distance	is	measured	perpendicular	from	the	line	to	the	point	

− Point-point	distance:	the	new	point	must	be	on	an	exisDng	line;	the	distance	is	
measured	between	both	points	

Inputs:	
− Tag:	one	or	more	element	Tags	of	target	points	or	line	segments	(rhs	shape)	

	49



− refTag:	one	or	more	element	Tags	of	reference	points	or	line	segments	(lhs	or	rhs	
shape)	

− distanceD:	one	or	more	distance	values,	each	either	a	numeric	value	or	a	Description	
(enclosed	within	backward	quotes)	

− direc4onD:	opDonal,	one	or	more	direcDon	vectors,	each	either	a	vector,	a	coordinate	
tuple	or	a	Description	(enclosed	within	backward	quotes)	

Outputs:	
− Direc4ve:	Directive	text	

SGI Direc=on Direc=ve  

The	SGI Direction Directive component	creates	a	direcDon	direcDve	from	one	or	more	line	
element	tags	and	direcDon	vectors.	Any	discrepancy	between	the	numbers	of	inputs	is	
resolved	by	copying	the	respecDve	last	value.	
The	direcDon	direcDve	specifies	the	direcDon	vector	of	a	new	line	element.	The	direcDon	
vector	can	be	explicated	as	a	coordinate	tuple	or	as	a	descripDon	enclosed	within	backward	
quotes.	For	example,	the	descripDon	`#plane.normal`	prescribes	the	normal	vector	of	a	
tagged	plane	as	the	direcDon	vector.	
Inputs:	

− Tag:	one	or	more	element	Tags	of	line	segments	(rhs	shape)	
− direc4onD:	one	or	more	direcDon	vectors,	each	either	a	coordinate	tuple	or	a	

Description	(enclosed	within	backward	quotes)	
Outputs:	

− Direc4ve:	Directive	text	

SGI Length Direc=ve 

The	SGI Length Directive component	creates	a	length	direcDve	from	one	or	more	line	
element	tags	and	length	values.	Any	discrepancy	between	the	numbers	of	inputs	is	resolved	
by	copying	the	respecDve	last	value.	
The	length	direcDve	specifies	the	length	of	a	new	line	segment.	
Inputs:	

− Tag:	one	or	more	element	Tags	of	line	segments	(rhs	shape)	
− lengthD:	one	or	more	length	values,	each	either	a	numeric	value	or	a	Description	

(enclosed	within	backward	quotes)	
Outputs:	

− Direc4ve:	Directive	text	

SGI Angle Direc=ve 

The	SGI Angle Directive component	creates	an	angle	direcDve	text	from	one	or	more	target	
and	reference	element	tags	and	angle	values.	Any	discrepancy	between	the	numbers	of	
inputs	is	resolved	by	copying	the	respecDve	last	value.	
The	angle	direcDve	specifies	the	angle	(in	radians)	between	a	new	spaDal	line	element	and	
an	exisDng	spaDal	line	element.	
Inputs:	

− Tag:	one	or	more	element	Tags	of	target	line	segments	(rhs	shape)	

	50



− refTag:	one	or	more	element	Tags	of	reference	line	segments	(lhs	or	rhs	shape)	
− angleD:	one	or	more	angle	values	(expressed	in	radians),	each	either	a	numeric	value	

or	a	Description	(enclosed	within	backward	quotes)	
Outputs:	

− Direc4ve:	Directive	text	

	51



Appendix A. A formal nota=on for shape descrip=ons 

The	table	below	presents	a	formal	notaDon	for	shape	descripDons	and	the	leK-hand-side	
(lhs)	and	right-hand-side	(rhs)	of	shape	descripDon	rules	in	Extended	Backus-Naur-Form	
(EBNF),	including	examples.	The	same	non-terminals	serve	to	define	the	producDon	rules	for	
a	descripDon,	an	lhs	and	an	rhs.	Only	when	necessary	are	alternaDve	producDon	rules	
defined	for	the	same	non-terminal;	these	are	then	idenDfied	by	adding	the	terms	
descrip4on,	lhs	and	rhs,	respecDvely,	enclosed	within	angle	brackets	(‘<...>’),	as	a	prefix	to	
the	respecDve	producDon	rule.	

typed-descripDon	=	type-name	‘:’	descripDon	.	
type-name	=	idenDfier	.	
descripDon	=	descripDon-enDty	|	descripDon-sequence	.	
descripDon-enDty	=	literal	|	top-level-tuple	.	
descripDon-sequence	=	‘&’	descripDon-enDty	‘&’	{	descripDon-enDty	‘&’	}	.

literal	=	keyword-literal	|	number	|	string	.	
keyword-literal	=	‘e’	|	‘nil’	|	‘pi’	|	‘true’	|	‘false’.	
number	=	[	‘–’	]	digit-sequence	[	‘.’	digit-sequence	]	.	
digit-sequence	=	digit	{	digit	}	.	
digit	=	‘0’	|	‘1’	|	‘2’	|	‘3’	|	‘4’	|	‘5’	|	‘6’	|	‘7’	|	‘8’	|	‘9’	.	
string	=	‘“’	{	string-character	}	‘”’	.	
string-character	=	any-character-except-quote	|	‘\’	‘“’	.

Example	descrip4on-en4ty:	
“centrally divided, double 1-rafter beam in front and back” 
Example	descrip4on-sequence:	
&e&0&“nothing”&

top-level-tuple	=	tuple	|	unmarked-tuple	.	
tuple	=	‘(’	tuple-enDDes	‘)’	|	‘<’	[	tuple-enDDes	]	‘>’	|	‘[’	[	tuple-enDDes	]	‘]’	.	
<descripDon>tuple-enDDes	=	tuple-enDty-sequence	.	
<lhs>tuple-enDDes	=	tuple-enDty-sequence	|	tuple-expression	.	
<rhs>tuple-enDDes	=	tuple-enDty-sequence	|	tuple-expression	.	
tuple-enDty-sequence	=	tuple-enDty	(	{	‘,’	tuple-enDty	}	|	{	‘;’	tuple-enDty	}	)	.	
<descripDon>tuple-enDty	=	literal	|	tuple	.	
<lhs>tuple-enDty	=	numeric-expression	|	string-expression	|	tuple	.	
<rhs>tuple-enDty	=	numeric-expression	|	string-expression	|	tuple	|	funcDon-returns-tuple	.	
unmarked-tuple	=	tuple-expression	|	tuple	(	tuple	|	keyword-literal	)	{	tuple-enDty	}	.

Example	tuple:	
(“l:”, 10, “c:”, (0, 0), “r:”, 0) 
Example	unmarked-tuple:	
<" ", "O", "R0", "R1"> <"O", 1, 1, 1> <"R0", 1, 1, 0> <"R1", 1, 0, 1>

descripDon-rule-side	=	descripDon-rule-enDty	|	descripDon-rule-sequence	.	
<lhs>descripDon-rule-enDty	=	literal	|	parameter	[	‘?’	condiDonal	]	|	string-expression	|	top-level-
tuple	.	
<rhs>descripDon-rule-enDty	=	numeric-expression	|	string-expression	|	funcDon-returns-tuple	|	
tuple-expression	.	
descripDon-rule-sequence	=	‘&’	descripDon-rule-enDty	‘&’	{	descripDon-rule-enDty	‘&’	}	.

	52



parameter	=	idenDfier	.		
idenDfier	=	(	le<er	|	underscore	)	{	(	le<er	|	underscore	|	digit	)	}	.	
le<er	=	‘A’	|	‘B’	|	‘C’	|	‘D’	|	‘E’	|	‘F’	|	‘G’	|	‘H’	|	‘I’	|	‘J’	|	‘K’	|	‘L’	|	‘M’	|	‘N’	|	‘O’	|	‘P’	|	‘Q’	|	‘R’	|	‘S’	|	
‘T’	|	‘U’	|	‘V’	|	‘W’	|	‘X’	|	‘Y’	|	‘Z’	|	‘a’	|	‘b’	|	‘c’	|	‘d’	|	‘e’	|	‘f’	|	‘g’	|	‘h’	|	‘i’	|	‘j’	|	‘k’	|	‘l’	|	‘m’	|	‘n’	|	
‘o’	|	‘p’	|	‘q’	|	‘r’	|	‘s’	|	‘t’	|	‘u’	|	‘v’	|	‘w’	|	‘x’	|	‘y’	|	‘z’	.	
underscore	=	‘_’	.

Example	<lhs>descrip4on-rule-en4ty:	
<“Fixed”, var1> <var2, var3> remainder 
Example	descrip4on-rule-sequence:	
&a1&a2&a3&a4&a5&a6&a7&a8&

condiDonal	=	enumeraDon	|	equaDon	|	range.	
enumeraDon	=	‘{’	(	number-sequence	|	string-sequence	)	‘}’	.	
number-sequence	=	number	{	‘,’	number	}	.	
string-sequence	=	string	{	‘,’	string	}	.	
equaDon	=	comparator	comparand	.	
comparator	=	‘=’	|	‘<>’	|	‘<’	|	‘<=’	|	‘>’	|	‘>=’	.	
comparand	=	number	|	‘(’	numeric-expression	‘)’	|	parameter	|	reference	.	
range	=	‘[‘	number	‘,’	number	‘]’	.

Example	<lhs>descrip4on-rule-en4ty	with	enumera4on:	
yard?{nil, “default”} 
Example	<lhs>descrip4on-rule-en4ty	with	equa4on:	
<nrooms?>2, rooms>

numeric-expression	=	term	{	addiDon-operator	term	}	.	
term	=	factor	{	mulDplicaDon-operator	factor	}	.	
factor	=	base	{	exponenDaDon-operator	exponent	}	.	
exponent	=	base	.	
base	=	keyword-literal	|	number	|	‘(’	numeric-expression	‘)’	|	funcDon-returns-number	|	parameter	
|	reference	.	
exponenDaDon-operator	=	‘^’	.	
mulDplicaDon-operator	=	‘*’	|	‘/’	|	‘%’	.	
addiDon-operator	=	‘+’	|	‘–’	.

Example	numeric-expression:	
vol – pi^2 * radius * (length / 2)^2 + 4 / 3 * pi * (length / 2)^3

string-expression	=	string-expression-enDty	{	‘.’	string-expression-enDty	}	.	
<lhs>string-expression-enDty	=	literal	|	parameter	[	‘?’	condiDonal	]	.	
<rhs>string-expression-enDty	=	base	|	string	|	funcDon-returns-string	.

Example	<rhs>string-expression:	
“with ”.(c + 1).“ columns” 
Example	<lhs>string-expression:	
“with ”.c?=(be21 + be22).“ columns”

	53



<lhs>tuple-expression	=	tuple-append	|	tuple-prepend	.	
<rhs>tuple-expression	=	tuple-addiDon	|	tuple-extension	.		
tuple-append	=	{	tuple-enDty	}	parameter	(	‘*’	|	‘+’	)	tuple-enDty	{	tuple-enDty	}	[	tuple-
expression	]	.	
tuple-prepend	=	[	tuple-expression	]	{	tuple-enDty	}	tuple-enDty	parameter	(	‘*’	|	‘+’	)	{	tuple-
enDty	}	.	
tuple-addiDon	=	[	parameter	]	‘+’	basic-tuple-argument	.		
tuple-extension	=	{	tuple-enDty	}	parameter	{	tuple-enDty	}	[	tuple-expression	]	.

Example	tuple-prepend:	
h1 h2 H* 
Example	tuple-extension:	
a1 last(a1) + (0, 1) 
Example	tuple-addi4on:	
bedrooms + <1, [(“couple”, 0), (“double”, 0), (“single”, 1)]>

	54



funcDon	=	funcDon-returns-number	|	funcDon-returns-string	|	funcDon-returns-tuple	.	
funcDon-returns-number	=	numeric-funcDon	|	length-funcDon	|	string-funcDon-untyped	|	tuple-
funcDon-untyped	|	vector-funcDon	|	round-funcDon	|	random-funcDon	.	
numeric-funcDon	=	(	‘sqrt’	|	‘sin’	|	‘cos’	|	‘tan’	|	‘asin’	|	‘acos’	|	‘atan’)	‘(’	numeric-expression	‘)’	|	
‘atan2’	‘(’	numeric-expression	‘,’	numeric-expression	‘)’	.	
length-funcDon	=	‘length’	‘(’	(	string-argument	|	tuple-argument	)	‘)’	.	
<lhs>string-argument	=	string	|	funcDon-returns-string	|	parameter	|	reference	.	
<rhs>string-argument	=	string-expression	.	
funcDon-returns-string	=	string-funcDon-returns-string	|	string-funcDon-untyped	|	tuple-funcDon-
untyped	.	
string-funcDon-returns-string	=	(	‘leK’	|	‘right’	)	‘(’	string-argument	‘,’	numeric-expression	‘)’	.	
string-funcDon-untyped	=	‘eval’	‘(’	string-argument	‘)’	.	
tuple-funcDon-untyped	=	(	‘first’	|	‘last’	|	‘min’	|	‘max’	)	‘(’	tuple-argument	‘)’	|	(	‘item’	)	‘(‘	tuple-
argument	‘,’	numeric-expression	‘)’	.	
<lhs>tuple-argument	=	basic-tuple-argument	.	
<rhs>tuple-argument	=	basic-tuple-argument	|	tuple-expression	.	
basic-tuple-argument	=	tuple	|	funcDon-returns-tuple	|	parameter	|	reference	.	
funcDon-returns-tuple	=	tuple-funcDon-returns-tuple	|	funcDon-returns-vector	|	string-funcDon-
untyped	|	tuple-funcDon-untyped	.	
tuple-funcDon-returns-tuple	=	(	‘unique’	|	‘segments’	|	‘pairwise’	|	‘loops’	)	‘(’	tuple-argument	‘)’	|	
‘adjacencies’	‘(’	tuple-argument	‘,’	tuple-argument	‘)’	.	
funcDon-returns-vector	=	two-vector-funcDon	|	proj-vector-funcDon	|	scale-vector-funcDon	|	
round-funcDon	.	
two-vector-funcDon	=	(	‘vectoradd’	|	‘vectorsubtract’	|	‘dotproduct’	|	‘crossproduct’	)	‘(’	(	vector-
argument	‘,’	vector-argument	|	two-vector-argument	)	‘)’	.	
vector-argument	=	‘(‘	numeric-expression	‘,’	numeric-expression	[	‘,’	numeric-expression	]	‘)’	|	
funcDon-returns-vector	|	parameter	|	reference	.	
two-vector-argument	=	‘(‘	vector-argument	‘,’	vector-argument	‘)’	|	parameter	|	reference	.	
proj-vector-funcDon	=	‘proj’	‘(’	(	vector-argument	‘,’	vector-argument	‘,’	vector-argument	|	three-
vector-argument	)	‘)’	.	
three-vector-argument	=	‘(‘	vector-argument	‘,’	vector-argument	‘,’	vector-argument	‘)’	|	parameter	
|	reference	.	
scale-vector-funcDon	=	‘vectorscale’		‘(’	(	vector-argument	‘,’	numeric-expression	|	vector-number-
argument	)	‘)’	.	
vector-number-argument	=	‘(‘	vector-argument	‘,’	numeric-expression	‘)’	|	parameter	|	reference	.	
vector-funcDon	=	(	‘mag’	|	‘angle’	)	(	‘(’	vector-argument	‘,’	vector-argument	‘)’	|	‘(’	two-vector-
argument	‘)’	)	.	
round-funcDon	=	‘round’	‘(‘	(	numeric-expression	|	vector-argument	‘)’	.	
random-funcDon	=	‘random’	‘(’	vector-argument	‘)’	.

Example	func4on-returns-number:	
length(“room”) 
Example	func4on-returns-tuple:	
adjacencies(a4, a5 a6)

	55



reference	=	reference-to-lhs	|	reference-to-rhs	.	
reference-to-lhs	=	[	‘lhs.’	]	reference-designator	‘.’	(	‘value’	|	parameter	|	property	)	[	‘:’	filter	]	.	
reference-to-rhs	=	‘rhs.’	reference-designator	‘.’	property	[	‘:’	filter	]	.	
reference-designator	=	idenDfier	.	
property	=	idenDfier	.	
filter	=	reference-designator	‘.’	property	filter-operator	(	number	|	vector	|	string	)	.	
filter-operator	=	‘=’	|	‘<>’	|	‘<=’	|	‘>=’	.	
vector	=	[	raDonal	]	‘(’	raDonal	‘,’	raDonal	‘,’	raDonal	‘)’	.	
raDonal	=	[	‘–’	]	digit-sequence	[	‘/’	digit-sequence	]	.

Example	reference-to-lhs:	
indices.value 
Example	reference-to-rhs:	
rhs.sections.radius:labels.label=“S”

	56



Appendix B. Descrip=on func=ons 

Numerical func=ons 

*atan	versus	atan2:	
− atan	takes	1	input	and	returns	a	result	from	quadrants	1	and	4	
− atan2	takes	2	inputs	(u,	v)	that	specify	a	raDo	u/v	and	returns	a	result	from	all	quadrants	
For	example:	

Text func=ons 

func4on input output

abs 1	number The	absolute	value	of	the	number

sqrt 1	number The	square	root	of	the	number

sin 1	number The	sine	value	of	the	angle	(in	radians)

cos 1	number The	cosine	value	of	the	angle	(in	radians)

tan 1	number The	tangent	value	of	the	angle	(in	radians)

asin 1	number The	inverse	sine	of	the	number	(in	radians)

acos 1	number The	inverse	cosine	of	the	number	(in	radians)

atan* 1	number The		inverse	tangent	of	the	number	(in	radians)

atan2* 2	numbers The	inverse	tangent	of	the	raDo	(in	radians)

todegree 1	number The	value	converted	from	radians	in	degrees

toradian 1	number The	value	converted	from	degrees	in	radians

round 1	number The	value	rounded	to	the	nearest	integer

u v x	=	u/v atan(x) atan2(u,v)

2 1 2 1.1071487177940904 1.1071487177940904

-2 1 -2 -1.1071487177940904 -1.1071487177940904

2 -1 -2 -1.1071487177940904 2.0344439357957027

-2 -1 2 1.1071487177940904 -	2.0344439357957027

func4on input output

length 1	string The	length	of	the	string

left 1	string	and	1	number The	leK	substring	of	the	specified	length

right 1	string	and	1	number The	right	substring	of	the	specified	length

	57



Tuple func=ons 

func4on input output

length 1	tuple The	number	of	elements	in	the	tuple

first 1	tuple The	first	element	of	the	tuple

last 1	tuple The	last	element	of	the	tuple

item 1	tuple	and	1	number The	indexed	element	of	the	tuple

min 1	tuple The	element	of	the	tuple	with	minimum	value

max 1	tuple The	element	of	the	tuple	with	maximum	value

unique 1	tuple A	tuple	of	only	unique	elements

pairwise 1	tuple A	tuple	of	pairs	extracDng	consecuDve	elements	
pairwise	from	the	operand	tuple;	
e.g.,	(a,	b,	c,	d)	->	((a,	b),	(c,	d))

segments 1	tuple A	tuple	of	overlapping	pairs	extracDng	
consecuDve	elements	from	the	operand	tuple;	
e.g.,	(a,	b,	c,	d)	->	((a,	b),	(b,	c),	(c,	d))

loops 1	tuple A	tuple	of	tuples	idenDfying	loops	in	the	operand	
tuple;	e.g.,	(a,	b,	c,	d,	a,	e,	f,	c)	->	((a,	b,	c,	d),	(c,	d,	
a,	e,	f)

adjacencies 2	tuples:	a	tuple	of	
“enclosures”	and	a	tuple	of	
“connecDng”	elements

A	tuple	of	tuples	represenDng	an	adjacency	
matrix

random 1	tuple:	either	2	or	3	
numbers

A	random	number	within	the	range	specified	by	
the	first	two	operands;	the	opDonal	third	
operand	is	considered	as	a	step	value	for	the	
random	number	generaDon

	58



Vector (tuple) func=ons 

*A	vector	tuple	is	a	tuple	of	two	or	three	numbers;	any	funcDon	accepDng	(one	or	more)	
vector	tuples	will	also	accept	a	single	tuple	collecDng	all	operands	

func4on input output

round 1	vector	tuple* A	vector	tuple	with	each	value	rounded	to	the	
nearest	integer

mag 1	or	2	vector	tuples* The	distance	between	the	two	vectors	or	the	
magnitude	or	length	of	a	single	vector

angle 2	vector	tuples* The	angle	between	the	two	vectors	
(counterclockwise	angle	from	the	first	to	the	
second	vector)	(in	radians)

proj 3	vector	tuples*:	a	direcDon	
vector,	a	root	vector	and	a	
posiDon	vector

A	vector	tuple	represenDng	the	projecDon	of	the	
posiDon	vector	on	the	line	specified	by	the	
direcDon	vector	and	root	vector

vectoradd 2	vector	tuples* A	vector	tuple	represenDng	the	sum	of	the	two	
vectors

vectorsubtract 2	vector	tuples* A	vector	tuple	represenDng	the	difference	of	the	
two	vectors

vectorscale 1	vector	tuple*	and	1	number A	vector	tuple	represenDng	the	product	of	the	
vector	and	the	scalar

dotproduct 2	vector	tuples* The	number	resulDng	from	the	dot	product	of	the	
two	vectors

crossproduct 2	vector	tuples* A	vector	tuple	represenDng	the	cross	product	of	
the	two	vectors

	59



Appendix C: A formal nota=on for flow descrip=ons 
We	adapt	the	notaDon	for	regular	expressions	as	a	formal	notaDon	for	flow	descripDons.	
Regular	expressions	are	pa<erns	that	are	used	to	match	strings	by	string	searching	
algorithms.	Regular	expressions	are	composed	of	tokens	that	are	combined	in	a	prescribed	
order,	with	some	variaDon	built	into	the	expression,	in	order	to	match	a	goal	string.	Similarly,	
flows	are	composed	of	shape	or	compound	rules	that	are	combined	in	a	prescribed	order,	
with	some	algorithmic	variaDon,	in	order	to	produce	a	valid	final	shape.	

Within	the	table	below	we	use	the	term	sub-flow	to	denote	each	and	every	element	within	a	
flow	or	sub-flow.	That	is,	a	sub-flow	may	be	a	rule,	a	flow	or	a	flow	structure	(sequence,	
disjuncDon	or	negaDon).	A	rule	is	represented	by	its	name,	so	is	a	flow.	A	flow	structure	is	
represented	either	as	a	sequence	of	sub-flows	within	parentheses,	as	a	disjuncDon	of	sub-
flows	within	square	brackets,	or	as	a	sub-flow	preceded	by	the	negaDon	symbol	‘!’.	

Metacharacter Explana4on

␣ A	space	separates	two	sub-flows	in	a	sequence	or	disjuncDon.	In	a	sequence,	if	
either	sub-flow	fails	to	apply,	the	enDre	sequence	fails	to	apply.	In	a	
disjuncDon,	only	one	sub-flow	needs	to	succeed	for	the	disjuncDon	to	
succeed.

(…) Parentheses	enclose	a	sequence	of	sub-flows.	Sub-flows	are	a<empted	to	be	
applied	one	aKer	the	other,	each	Dme	on	the	result	of	the	previous	
applicaDon,	in	the	order	specified.	If	one	of	the	sub-flows	fails,	backtracking	
will	occur.

[…] Square	brackets	enclose	a	disjuncDon	(selecDon)	of	alternaDve	sub-flows.	
AlternaDves	are	a<empted	to	be	applied	in	the	order	specified.	As	soon	as	one	
applicaDon	succeeds,	subsequent	sub-flows	are	skipped.	If	no	alternaDve	
applies,	backtracking	will	occur.

[*…] Square	brackets	enclose	a	disjuncDon	(selecDon)	of	alternaDve	sub-flows.	
When	the	first	character	within	square	brackets	is	an	asterisk,	the	alternaDves	
are	a<empted	to	be	applied	in	a	random	order	instead	of	in	the	order	
specified.	As	soon	as	one	applicaDon	succeeds,	subsequent	sub-flows	are	
skipped.	If	no	alternaDve	applies,	backtracking	will	occur.

! Success	and	failure	of	the	succeeding	sub-flow	are	inverted.	If	the	sub-flow	
fails,	the	applicaDon	succeeds,	whereas	if	the	sub-flow	succeeds,	backtracking	
occurs.

? The	preceding	sub-flow	may	apply	zero	or	one	Dme.	A	single	applicaDon	is	
a<empted.	Success	or	failure,	no	backtracking	occurs,	unless	backtracking	
arrives	from	a	later	point	to	this	sub-flow	and	all	alternaDves	within	this	sub-
flow	have	been	exhausted.

* The	preceding	sub-flow	may	apply	zero,	one	or	more	Dmes.	The	iteraDon	
proceeds	unDl	the	sub-flow	fails	to	apply.	No	backtracking	occurs,	unless	
backtracking	arrives	from	a	later	point	to	this	sub-flow	and	all	alternaDves	
within	this	iteraDve	sub-flow	have	been	exhausted.

	60



+ The	preceding	sub-flow	may	apply	one	or	more	Dmes.	The	iteraDon	proceeds	
unDl	the	sub-flow	fails	to	apply.	Backtracking	only	occurs	if	the	sub-flow	fails	at	
the	very	first	Dme,	unless	backtracking	arrives	from	a	later	point	to	this	sub-
flow	and	all	alternaDves	within	this	iteraDve	sub-flow	have	been	exhausted.

{n} he	preceding	sub-flow	may	apply	exactly	n	Dmes.	The	iteraDon	proceeds	unDl	
n	applicaDons	or	unDl	the	sub-flow	fails	to	apply.	Backtracking	occurs	if	fewer	
than	n	applicaDons	succeed	or,	upon	backtracking	from	a	later	point	to	this	
sub-flow,	if	all	alternaDves	within	this	iteraDve	sub-flow	have	been	exhausted.

{n,} The	preceding	sub-flow	may	apply	n	or	more	Dmes.	The	iteraDon	proceeds	
unDl	the	sub-flow	fails	to	apply.	Backtracking	occurs	if	fewer	than	n	
applicaDons	succeed	or,	upon	backtracking	from	a	later	point	to	this	sub-flow,	
if	all	alternaDves	within	this	iteraDve	sub-flow	have	been	exhausted.

{n,m} The	preceding	sub-flow	may	apply	any	number	of	Dmes	between	n	and	m.	The	
iteraDon	proceeds	unDl	m	consecuDve	applicaDons	or	unDl	the	sub-flow	fails	
to	apply.	Backtracking	occurs	if	fewer	than	n	applicaDons	succeed	or,	upon	
backtracking	from	a	later	point	to	this	sub-flow,	if	all	alternaDves	within	this	
iteraDve	sub-flow	have	been	exhausted.

?+ The	preceding	sub-flow	may	apply	zero	or	one	Dme.	No	backtracking	occurs.	
When	backtracking	arrives	from	a	later	point	to	this	sub-flow,	rather	than	
backtracking	within	the	sub-flow	or	its	iteraDon,	backjumping	takes	place	to	
the	point	before	this	sub-flow.

*+ The	preceding	sub-flow	may	apply	zero,	one	or	more	Dmes.	The	iteraDon	
proceeds	unDl	the	sub-flow	fails	to	apply.	No	backtracking	occurs.	When	
backtracking	arrives	from	a	later	point	to	this	sub-flow,	rather	than	
backtracking	within	the	sub-flow	or	its	iteraDon,	backjumping	takes	place	to	
the	point	before	this	sub-flow.

++ The	preceding	sub-flow	may	apply	one	or	more	Dmes.	The	iteraDon	proceeds	
unDl	the	sub-flow	fails	to	apply.	Backtracking	only	occurs	if	the	sub-flow	fails	at	
the	very	first	Dme.	When	backtracking	arrives	from	a	later	point	to	this	sub-
flow,	rather	than	backtracking	within	the	sub-flow	or	its	iteraDon,	backjumping	
takes	place	to	the	point	before	this	sub-flow.

{n}+ The	preceding	sub-flow	may	apply	exactly	n	Dmes.	The	iteraDon	proceeds	unDl	
n	applicaDons	or	unDl	the	sub-flow	fails	to	apply.	Backtracking	occurs	if	fewer	
than	n	applicaDons	succeed.	When	backtracking	arrives	from	a	later	point	to	
this	sub-flow,	rather	than	backtracking	within	the	sub-flow	or	its	iteraDon,	
backjumping	takes	place	to	the	point	before	this	sub-flow.

{n,}+ The	preceding	sub-flow	may	apply	n	or	more	Dmes.	The	iteraDon	proceeds	
unDl	the	sub-flow	fails	to	apply.	Backtracking	occurs	if	fewer	than	n	
applicaDons	succeed.	When	backtracking	arrives	from	a	later	point	to	this	sub-
flow,	rather	than	backtracking	within	the	sub-flow	or	its	iteraDon,	backjumping	
takes	place	to	the	point	before	this	sub-flow.

	61



{n,m}+ The	preceding	sub-flow	may	apply	any	number	of	Dmes	between	n	and	m.	The	
iteraDon	proceeds	unDl	m	applicaDons	or	unDl	the	sub-flow	fails	to	apply.	
Backtracking	occurs	if	fewer	than	n	applicaDons	succeed.	When	backtracking	
arrives	from	a	later	point	to	this	sub-flow,	rather	than	backtracking	within	the	
sub-flow	or	its	iteraDon,	backjumping	takes	place	to	the	point	before	this	sub-
flow.

?? The	preceding	sub-flow	may	apply	zero	or	one	Dme.	ApplicaDon	will	be	
skipped	at	first.	When	backtracking	arrives	from	a	later	point	to	this	sub-flow,	
applicaDon	will	be	tried.	Backtracking	occurs	if	all	alternaDves	within	this	sub-
flow	have	been	exhausted.

*? The	preceding	sub-flow	may	apply	zero,	one	or	more	Dmes.	ApplicaDon	will	be	
skipped	at	first.	When	backtracking	arrives	from	a	later	point	to	this	sub-flow,	
applicaDon	be	tried	or,	eventually,	repeated.	Backtracking	occurs	if	all	
alternaDves	within	this	iteraDve	sub-flow	have	been	exhausted.

+? The	preceding	sub-flow	may	apply	one	or	more	Dmes.	A	single	applicaDon	will	
be	tried	at	first.	If	successful,	applicaDon	may	be	repeated,	but	only	upon	
backtracking	from	a	later	point	to	this	sub-flow.	Backtracking	occurs	if	a	single	
applicaDon	fails	or	all	alternaDves	within	this	iteraDve	sub-flow	have	been	
exhausted.

{n}? The	preceding	sub-flow	may	apply	exactly	n	Dmes.	The	iteraDon	proceeds	unDl	
n	applicaDons	or	unDl	the	sub-flow	fails	to	apply.	Backtracking	occurs	if	fewer	
than	n	applicaDons	succeed	or,	upon	backtracking	from	a	later	point	to	this	
sub-flow,	if	all	alternaDves	within	this	iteraDve	sub-flow	have	been	exhausted.

{n,}? The	preceding	sub-flow	may	apply	n	or	more	Dmes.	The	iteraDon	proceeds	
unDl	n	applicaDons	or	unDl	the	sub-flow	fails	to	apply.	If	successful,	addiDonal	
applicaDons	may	be	tried,	but	only	upon	backtracking	from	a	later	point	to	this	
sub-flow.	Backtracking	occurs	if	fewer	than	n	applicaDons	succeed	or	if	all	
alternaDves	within	this	sub-flow	have	been	exhausted.

{n,m}? The	preceding	sub-flow	may	apply	any	number	of	Dmes	between	n	and	m.	The	
iteraDon	proceeds	unDl	n	applicaDons	or	unDl	the	sub-flow	fails	to	apply.	If	
successful,	addiDonal	applicaDons	may	be	tried,	but	only	upon	backtracking	
from	a	later	point	to	this	sub-flow,	and	never	more	than	m.	Backtracking	
occurs	if	fewer	than	n	applicaDons	succeed	or	if	all	alternaDves	within	this	sub-
flow	have	been	exhausted.

?* The	preceding	sub-flow	may	apply	zero	or	one	Dme.	The	one	applicaDon	may	
be	skipped	randomly.	Backtracking	only	occurs	if	all	alternaDves	within	this	
sub-flow	have	been	exhausted.

** The	preceding	sub-flow	may	apply	zero,	one	or	more	Dmes.	The	iteraDon	
proceeds	a	selected	random	number	of	Dmes	or	unDl	the	sub-flow	fails	to	
apply.	When	backtracking	arrives	from	a	later	point	to	this	sub-flow,	fewer	or	
addiDonal	applicaDons	may	be	tried	as	well,	in	this	order.	Backtracking	occurs	
if	all	alternaDves	within	this	iteraDve	sub-flow	have	been	exhausted.

	62



+* The	preceding	sub-flow	may	apply	one	or	more	Dmes.	The	iteraDon	proceeds	a	
selected	random	number	of	Dmes	(at	least	one)	or	unDl	the	sub-flow	fails	to	
apply.	When	backtracking	arrives	from	a	later	point	to	this	sub-flow,	fewer	or	
addiDonal	applicaDons	may	be	tried	as	well,	in	this	order.	Backtracking	occurs	
if	a	single	applicaDon	fails	or	all	alternaDves	within	this	iteraDve	sub-flow	have	
been	exhausted.

{n}* The	preceding	sub-flow	may	apply	exactly	n	Dmes.	The	iteraDon	proceeds	unDl	
n	applicaDons	or	unDl	the	sub-flow	fails	to	apply.	Backtracking	occurs	if	fewer	
than	n	applicaDons	succeed	or,	upon	backtracking	from	a	later	point	to	this	
sub-flow,	if	all	alternaDves	within	this	iteraDve	sub-flow	have	been	exhausted.

{n,}* The	preceding	sub-flow	may	apply	n	or	more	Dmes.	The	iteraDon	proceeds	a	
selected	random	number	of	Dmes	(at	least	n)	or	unDl	the	sub-flow	fails	to	
apply.	When	backtracking	arrives	from	a	later	point	to	this	sub-flow,	fewer	or	
addiDonal	applicaDons	may	be	tried	as	well,	in	this	order.	Backtracking	occurs	
if	fewer	than	n	applicaDons	succeed	or	if	all	alternaDves	within	this	iteraDve	
sub-flow	have	been	exhausted.

{n,m}* The	preceding	sub-flow	may	apply	any	number	of	Dmes	between	n	and	m.	The	
iteraDon	proceeds	a	selected	random	number	of	Dmes	(at	least	n	and	at	most	
m)	or	unDl	the	sub-flow	fails	to	apply.	When	backtracking	arrives	from	a	later	
point	to	this	sub-flow,	fewer	or	addiDonal	applicaDons	may	be	tried	as	well,	in	
this	order.	Backtracking	occurs	if	fewer	than	n	applicaDons	succeed	or	if	all	
alternaDves	within	this	iteraDve	sub-flow	have	been	exhausted.

	63



Appendix D: FAQ 

1. Setup	component	is	red	and	the	error	says	"Solu4on	excep4on:No	module	named	
mpmath"	

This	is	an	installaDon	issue.	mpmath	is	a	python	module	that	is	referenced	by	the	plug-in.	
The	module	should	be	found	in	\Program	Files\Rhino	6\Plug-ins\IronPython\Lib\site-
packages	or	equivalent	on	your	computer.	Check	if	you	have	installed	it	by	copying	it	(and	all	
other	supporDng	modules)	into	the	site-packages	folder.	Also,	check	the	Rhino	module	
search	paths	(Rhino	Python	Editor	window	Tools/OpDons).	You	must	add	the	site-packages	
folder	to	the	module	search	paths.	

2. Setup	component	is	red	and	the	error	says	"Solu4on	excep4on:cannot	import	open	from	
io”	

The	‘sortal’	library	contains	a	subfolder	named	‘io’.	The	Rhino	python	library	already	contains	
a	file	‘io.py’.	When	both	end	up	in	the	same	locaDon,	Rhino	will	confuse	the	subfolder	
(module)	with	the	file.	It	is	important,	when	installing	'sortal'	into	C:\Program	Files\Rhino	
6\Plug-ins\IronPython\Lib,	to	copy	the	folder	'sortal'	here,	not	just	the	content	of	'sortal'.	

3. I’m	applying	a	simple	parametric-associa4ve	rule	to	all	the	faces	of	a	mesh,	but	some	
faces	are	not	matched	

This	might	be	an	issue	of	precision	of	the	Rhino/GH	data.	The	SortalGI	engine	tries	to	address	
issues	of	precision	by	performing	approximate	coordinate	comparisons,	but	this	doesn’t	
always	solve	the	problem.	While	Rhino	adopts	12	significant	figures,	small	errors	may	occur	
when	entering	geometries,	even	when	using	the	snap	funcDon.	Therefore,	the	default	
precision	adopted	by	the	SortalGI	engine	when	operaDng	within	Rhino	is	8	significant	figures.	
However,	the	SGI	Setup	component	sports	a	precision	input	that	you	can	adjust	the	value	of	
in	order	to	try	to	improve	upon	the	result.	Empirical	evidence	has	shown	that	a	precision	of	6	
to	8	significant	figures	tends	to	provide	the	best	results.	Even	then,	a	few	faces	might	sDll	
evade	the	matching	process,	especially	in	the	case	of	quadrilaterals,	or	higher	degree	
polygons.	An	addiDonal	rule	applying	to	a	copy	of	one	of	these	faces	can	help	to	close	the	
gap.	

4. I	get	a	warning	or	error	that	makes	no	sense	to	me.	What	can	I	do?	
Please	recompute	the	Grasshopper	model	(F5)	or	reconnect	an	input	to	the	SGI	Setup	
component	to	force	this	component	to	recompute.	This	may	resolve	the	issue;	someDmes,	a	
disconnect	may	occur	between	the	Grasshopper	model	and	the	SortalGI	engine,	which	may	
result	in	a	warning	or	error	with	li<le	or	no	relaDon	to	the	actual	data.	

5. Can	I	get	some	help?	
You	can	post	a	message	on	the	SortalGI	forum	(h<p://sortal.org/feedback/)	or	e-mail	
stouffs@sortal.org	

	64

http://sortal.org/feedback/
mailto:stouffs@sortal.org

	1. About the SortalGI plug-in
	2. Installation and update
	3. Common terms
	4. Data types
	5. Starting on a SortalGI-based parametric model
	6. Creating a shape
	7. Manipulating a shape
	8. Creating a rule
	9. Applying a rule
	10. Creating and applying flows (composite rules)
	11. Specifying shape descriptions
	12. Specifying predicates
	13. Specifying directives
	Appendix A. A formal notation for shape descriptions
	Appendix B. Description functions
	Appendix C: A formal notation for flow descriptions
	Appendix D: FAQ

