
SortalGI	plug-in	for	Grasshopper 
User manual

SortalGI	version	1.7

Manual	update	February	2022

Written	by	Rudi	Stouffs

Table of content

1. About the SortalGI plug-in	
2

2. Installation and update	
3

3. Common terms	
5

4. Data types	
8

5. Starting on a SortalGI-based parametric model	
12

6. Creating a shape	
14

7. Manipulating a shape	
18

8. Creating a rule	
21

9. Applying a rule	
25

10. Creating and applying flows (composite rules)	
29

11. Specifying shape descriptions	
35

12. Specifying predicates	
45

13. Specifying directives	
49

Appendix A. A formal notation for shape descriptions	
52

Appendix B. Description functions	
57

Appendix C: A formal notation for flow descriptions	
60

Appendix D: FAQ	 64

1

1. About the SortalGI plug-in

A	shape	rule	combines	a	specification	of	recognition	and	manipulation	(search	and	replace).	
A	shape	rule	is	commonly	specified	in	the	form	lhs	→	rhs,	where	the	left-hand-side	(lhs)	of	
the	rule	specifies	the	pattern	to	be	recognized	and	the	manipulation	of	the	current	shape	
then	involves	replacing	the	recognized	lhs	by	the	right-hand-side	(rhs)	of	the	shape	rule	in	
the	shape	under	investigation.	Recognition	necessarily	applies	under	some	transformation,	
for	example,	a	similarity	transformation,	and	the	resulting	manipulation	must	occur	under	
the	same	transformation	for	both	lhs	and	rhs.	That	is,	applying	a	rule	a	→	b	to	a	given	shape	
s	involves	determining	a	transformation	f	such	that	f(a)	is	a	part	of	s	(f(a)	≤	s),	following	
which	s	is	replaced	by	s	–	f(a)	+	f(b).

A	shape	grammar	generally	defines	a	collection	of	rules	together	with	an	initial	shape;	then,	
the	language	defined	by	a	shape	grammar	is	the	set	of	shapes	generated	by	the	rules	from	
the	initial	shape.	However,	from	a	user’s	point	of	view,	any	collection	of	rules	that	serves	a	
particular	purpose	can	be	considered	a	shape	grammar,	whether	or	not	it	requires	a	
particular	initial	shape	or,	instead,	can	be	applied	to	a	wide	variety	of	(initial)	shapes.

Sortal	grammars	extend	on	shape	grammars.	Where	shape	grammars	commonly	rely	on	a	
combination	of	line	segments	and	labelled	points,	sortal	grammars	take	a	modular	
representational	approach,	allowing	for	a	wide	variety	of	geometric	and	non-geometric	
elements	to	be	included	in	the	specification	of	shape	rules	and	grammars.	Sortal	grammars	
utilize	sortal	structures	as	representational	structures,	where	these	structures	are	defined	as	
formal	compositions	of	other,	primitive,	sortal	structures,	termed	sorts.	As	such,	sortal	
grammars	constitute	a	class	of	formalisms	for	design	grammars	and	benefit	from	the	fact	
that	every	component	sort	specifies	a	partial	order	relationship	on	its	individuals	and	forms,	
defining	both	the	matching	operation	and	the	arithmetic	operations	for	rule	application.

A	shape	grammar	interpreter	is	the	engine	that	supports	the	application	of	shape	rules,	
including	recognition	and	manipulation	(search	and	replace).	The	SortalGI	plug-in	for	
Grasshopper	encapsulates	the	SortalGI	sortal/shape	grammar	interpreter	and	makes	part	of	
its	functionality	available	within	Rhino/Grasshopper.	It	allows	the	user	to	create	and	apply	
shape	and	description	rules	within	the	Grasshopper	environment.	The	SortalGI	interpreter	
supports	emergence,	that	is,	subshape	recognition	is	unrestricted	by	how	a	shape	has	been	
drawn	or	structured.

Plug-in	development	by	Bianchi	Dy	and	Rudi	Stouffs

System	development	by	Bui	Do	Phuong	Tung	and	Rudi	Stouffs

Research	and	development	led	by	Rudi	Stouffs

2

2. Installation and update

Installation	applies	to	both	Windows	and	Mac	(Rhino	6	and	Rhino	7	only).	

Installation	takes	two	main	steps.	Firstly,	install	the	SortalGI	library	in	a	place	where	Rhino	
can	find	it;	this	is	required	for	every	major	update	(e.g.,	from	v1.6.0	to	v1.7.0).	Secondly,	
install	the	SortalGI	plug-in	(user	objects)	for	Grasshopper;	this	is	always	required,	also	in	the	
case	of	a	minor	update	(e.g.,	from	v1.7.0	to	v1.7.1).

If	you	have	not	yet	done	so,	download	the	latest	SortalGI	update	from	Food4Rhino	(http://
www.food4rhino.com/app/sortalgi-shape-grammar-interpreter)	or	sortal.org	(http://
www.sortal.org/downloads/plugin.html)	and	unzip	the	file.

Step 1 [Windows]: Installing the SortalGI library

This	step	applies	to	initial	installation	as	well	as—to	some	extent—every	major	update	(e.g.,	
from	v1.6.0	to	v1.7.0).

There	are	generally	two	locations	where	Rhino	expects	the	SortalGI	library	to	be	installed,	
either:

− C:\Users\me\AppData\Roaming\McNeel\Rhinoceros\6.0\scripts	or	equivalent	on	
your	computer

− C:\Program	Files\Rhino	6\Plug-ins\IronPython\Lib	or	equivalent	on	your	computer

You	can	identify	both	locations	from	Rhino’s	'Module	Search	Paths'	dialog:

a) Open	Rhino

b) Type	EditPythonScript	in	the	Rhino	Command	box

c) In	the	Rhino	Python	Editor	window,	select	'Options...'	from	the	Tools	menu

d) Note	the	available	'Module	Search	Paths'

If	you’d	like,	you	can	choose	any	other	location	and	add	it	to	the	'Module	Search	Paths'

The	following	steps	install	the	SortalGI	library	and	make	it	accessible	to	Rhino:

e) Copy-paste	the	content	of	the	folder	‘lib’	(the	subfolders	‘sortal’	and	‘site-packages’)	
into	the	preferred	location

f) Add	the	location	of	the	site-packages	subfolder	(e.g.,	C:\Program	Files\Rhino	6\Plug-
ins\IronPython\Lib\site-packages)	into	the	'Module	Search	Paths'

g) Switch	from	the	‘Files’	tab	to	the	‘Script	Engine’	tab	(in	the	Python	Options	window).

h) Check	the	‘Frames	Enabled’	option	and	click	‘OK’

Only	the	installation	of	the	‘sortal’	subfolder—replacing	it	with	the	newer	version—needs	to	
be	repeated	for	every	major	update.

Note:

i. Installing	the	SortalGI	library	in	IronPython\Lib	will	make	the	library	available	for	all	

users	but	requires	administrator	access

ii. A	‘site-packages’	folder	may	already	exist	in	IronPython\Lib,	it	suffices	to	add	the	

content	of	‘site-packages’	to	this	folder.	It	remains	important	to	add	this	subfolder	
into	the	'Module	Search	Paths'	if	not	already	done	so.

iii. If	different	versions	of	the	SortalGI	library	are	installed	in	different	locations,	the	
ordering	of	the	respective	parent	folders	in	the	'Module	Search	Paths'	will	define	
which	version	is	being	used

Step 1 [Mac]: Installing the SortalGI library

This	step	applies	to	initial	installation	as	well	as—to	some	extent—every	major	update	(e.g.,	
from	v1.6.0	to	v1.7.0).

3

http://www.food4rhino.com/app/sortalgi-shape-grammar-interpreter
http://www.food4rhino.com/app/sortalgi-shape-grammar-interpreter
http://www.sortal.org/downloads/plugin.html
http://www.sortal.org/downloads/plugin.html

Copy-paste	the	content	of	the	folder	‘lib’	(the	subfolders	‘sortal’	and	‘site-packages’)	into	the	
location	Macintosh	HD/Users/me/Library/Application	Support/McNeel/Rhinoceros/6.0/
scripts	or	equivalent	on	your	computer.	Unpack	‘site-packages’	by	moving	its	content	to	the	
‘scripts’	folder.

Only	the	installation	of	the	‘sortal’	subfolder—replacing	it	with	the	newer	version—needs	to	
be	repeated	for	every	major	update.

Note:

i. The	folder	Library	may	not	be	visible.	If	so,	select	your	home	directory	in	the	finder,	

choose	“Show	view	options”	from	the	View	menu	and	check	“Show	Library	Folder”

Step 2 [Windows/Mac]: Installing the SortalGI plug-in

This	step	applies	to	initial	installation	and	every	(minor	or	major)	update.

a) Open	Rhino	and	Grasshopper.

b) In	Grasshopper,	choose	File	>	Special	Folders	>	User	Object	folder.

c) Copy-paste	the	content	of	the	folder	‘user	objects’	into	this	'User	Object'	folder	

(replacing	any	files	with	the	same	name,	if	already	present).

The	result	should	be	automatically	reflected	in	Grasshopper.	There	should	be	an	‘SGI’	tab	in	
the	Grasshopper	Components	Tab	Panel	and	if	you	select	the	tab	it	should	include	all	the	
User	Objects	(see	below).	If	not,	you	may	want	to	restart	Grasshopper	and	Rhino	for	the	
changes	to	take	effect.

Note:

i. You	can	also	use	the	SGI Update	component	to	update	the	SortalGI	components	in	

the	Grasshopper	Components	Tab	Panel	as	well	as	in	the	current	parametric	model	
(see	section 5. Starting on a SortalGI-based parametric model). 
Do	note	that	compatibility	between	the	components	of	v1.5.0	with	respect	to	previous	
versions	is	rather	poor,	due	to	the	fact	that	input	and	output	parameters,	both	in	
terms	of	the	number	of	parameters	and	types	of	the	parameters,	have	changed	quite	
a	bit.	Unfortunately,	using	SGI Update	cannot	resolve	all	these	changes	automatically.

4

3. Common terms

The	following	object	classes	are	defined	to	exchange	information	between	SortalGI	
components	in	Grasshopper:

Shape (also denoted lhShape, rhShape, subShape, Shape1 or Shape2)

A	Shape	object	contains	the	shape’s	representation	as	used	by	the	SortalGI	engine,	together	
with	the	corresponding	GH	geometry	(see	section	6. Creating a shape).

Rule (also denoted pRule)

A	Rule	object	contains	the	rule’s	representation	as	composed	of	a	left-hand-side	Shape	object	
and	a	right-hand-side	Shape	object,	an	identifier	Name,	an	optional	description,	and,	
possibly,	one	or	more	Predicates	and/or	Directives	(see	section	8. Creating a rule).	Note	that	
in	a	limited	number	of	cases,	the	term	Rules	is	used	to	allow	for	both	Rule	objects	and	Flow	
objects.

Flow

A	Flow	object	contains	the	flow’s	representation	as	composed	of	an	R	(flow	structure)	object,	
an	identifier	Name,	and	an	optional	description	(see	section	10. Creating and applying flows
(composite rules)).	Note	that	in	some	cases,	the	term	Flow	is	used	to	allow	for	either	a	Flow	
object	or	an	R	(flow	structure)	object.

R (also denoted sequenceR, disjunctionR or negationR)

R	is	used	as	a	container	term	allowing	for	either	a	Rule	object,	a	Flow	object	or	an	R	(flow	
structure)		object,	where	the	latter	underlies	a	Flow	object,	omitting	the	Name	and	
description.	However,	the	terms	sequenceR,	disjunctionR	and	negationR	only	refer	to	an	R	
(flow	structure)	object.

In	addition,	the	following	terms	are	adopted	to	denote	various	information	types:

Name (also denoted ruleName or flowName)

The	name	of	a	rule	or	flow	must	be	a	unique	identifier,	consisting	only	of	letters,	digits	and/
or	underscores	and	always	starting	with	a	letter	or	underscore.

Type (also denoted descriptionType or sType)

The	term	descriptionType	or	Type	is	used	to	denote	a	description	type	name.	Description	
types	must	be	predefined	before	they	can	be	used	in	the	creation	of	a	(description)	shape.	
Description	type	names	must	be	identifiers,	consisting	only	of	letters,	digits	and/or	
underscores	and	always	starting	with	a	letter	or	underscore.	The	term	sType	is	a	container	
term	allowing	for	either	a	descriptionType	or	a	spatialType,	the	latter	being	a	fixed	
enumeration	(see	below).

Description (also denoted labelD, D, referenceD, auxRefD, conditionD, tupleD, functionD,
expressionD, propertyD, directionD, lengthD, distanceD, valueD, angleD)

The	term	Description	or	labelD	is	used	to	denote	a	textual	(shape)	description,	as	
distinguished	from	a	spatial	(shape)	description	(i.e.,	spatial	elements)	(see	section	11.
Specifying shape descriptions).	While	a	shape	description	is	inherently	textual,	it	can	also	be	
specified	as	a	numeric	value	or	a	vector.	A	shape	description	can	also	be	composed	as	an	

5

expression	or	tuple	from	other	descriptions	or	description	parts.	The	term	D	is	generally	
used	to	denote	any	description	or	part	thereof.	There	are	many	different	kinds	of	
descriptions,	which	is	reflected	in	the	many	variant	terms.

Tag (also denoted lineTag or refTag)

A	tag	is	a	label	specified	to	a	spatial	element	in	order	to	identify	it	within	a	corresponding	
description	during	rule	application.	A	tag	is	formed	by	an	identifier—consisting	only	of	
letters,	digits	and/or	underscores	and	always	starting	with	a	letter	or	underscore—preceded	
by	a	‘#’.	Any	spatial	element	can	be	assigned	a	tag,	but	the	term	lineTag	is	only	used	to	
denote	the	tag	of	a	line	segment.

Predicate

A	predicate	is	a	formatted	textual	specification	expressing	a	special	condition	on	the	
application	of	a	rule	(see	section	12. Specifying predicates).

Directive

A	directive	is	a	formatted	textual	specification	expressing	a	value	that	is	required	for	the	
unambiguous	execution	of	the	manipulation/replacement	part	of	a	parametric-associative	
rule	application	(see	section	13. Specifying directives).

Finally,	the	following	terms	each	reference	a	predefined	enumeration	of	(textual)	values:

colorMode

Any	spatial	element	can	have	a	color	attribute	assigned	conforming	to	one	of	the	predefined	
and	preselected	color	modes:	‘graytone’,	‘opaque’,	‘maxRGB’	(maximum	RGB	values),	
‘sumRGB’	(sum	of	RGB	values),	‘avgRGB’	(average	RGB	values),	‘alphaRGB’	(alpha	blending).	
Note	that	‘graytone’,	next	to	being	limited	to	grayscales,	is	the	only	color	mode	where	black,	
rather	than	white,	specifies	the	highest	value	(see	section	4. Data types).

spatialType

The	spatial	element	types	that	the	SortalGI	plug-in	currently	supports	are	‘point’,	‘line	
segment’,	‘plane	segment’,	‘circle’,	‘ellipse’,	‘circular	arc’	and	‘quadratic	Bezier’	(see	section	4.
Data types).

atttype

The	non-spatial	attribute	types	that	the	SortalGI	plug-in	currently	supports	are	‘labelD,	‘color’	
and	line	‘thickness’	(see	section	4. Data types).

Op

Within	a	shape	description,	two	kinds	of	operators	can	be	used.	Numerical	expressions	allow	
for	the	operators	‘+’	(addition),	‘–’	(subtraction),	‘*’	(multiplication),	‘/’	(division),	
‘%’	(modulo	operation)	and	‘^’	(exponentiation).	Conditional	expressions	allow	for	‘=’	(equal),	
‘<>’	(not	equal),	‘<’	(less	than),	‘>’	(greater	than),	‘<=’	(less	than	or	equal),	‘>=’	(greater	than	
or	equal),	‘[]’	(within	range)	and	‘{}]	(one	of).

6

Function

Within	a	shape	description,	functions	allow	for	additional	operations	on	numbers,	texts/
strings	and	tuples,	or	a	combination	thereof	(see	Functions in	section	11. Specifying shape
descriptions).

Marking

Within	a	shape	description,	tuple	markings	are	either	parentheses,	angle	brackets	or	square	
brackets,	to	enclose	the	tuple,	and	commas	or	semicolons,	as	separators	(either	‘(,)’,	‘<,>’,	
‘[,]’,	‘(;)’,	‘<;>’,	‘[;]’).	Alternatively,	the	enclosing	marks	can	be	omitted	with	spaces	as	
separators	(‘’).

Matching

Flows	support	four	different	matching	approaches:	‘greedy’,	‘possessive’,	‘lazy’	and	
‘probabilistic’	(see	section	10. Creating and applying flows (composite rules)).

Quantifier

A	flow	or	flow	structure	can	be	iterated	conform	a	specified	quantifier.	Aside	from	the	
predefined	values	‘?’	(zero	or	once),	‘*’	(zero,	once	or	more	times)	and	‘+’	(once	or	more	
times),	the	quantifier	can	also	be	composed	from	a	minimum	and,	optionally,	maximum	
value	as	in	the	forms	‘{min}’,	‘{min,}’	and	‘{min,	max}’.

7

4. Data types

Shapes	are	generally	composed	of	spatial	elements.	These	spatial	elements	may	have	non-
spatial	attributes.	Shapes	may	also	include	(textual)	shape	descriptions;	in	fact,	a	shape	can	
be	made	up	of	only	descriptions,	only	spatial	elements,	or	a	combination	thereof.	An	empty	
shape	is	also	allowed,	although	the	left-hand-side	shape	of	a	rule	(or	lhShape)	can	never	be	
empty.

Spatial element types

The	SortalGI	engine	currently	supports	the	following	spatial	element	types:	points,	line	
segments,	plane	segments,	circles,	ellipses,	circular	arcs	and	quadratic	Bezier	curves.	These	
can	be	created	as	geometries	in	Rhino	or	Grasshopper	and	converted	into	shape	elements	
using	the	SGI Shape	or	SGI dShape	components	(see	section	6. Creating a shape).	Note	that	
circular	arcs	are	not	yet	available	within	parametric-associative	rules	and,	if	specified,	will	be	
ignored.

Each	spatial	element	type	defines	a	sortal	structure	(or	sort).	It	may	be	necessary	to	refer	to	
a	sortal	structure	by	its	name	in	order	to	identify	a	spatial	element	within	a	description.	Note	
that	sortal	structures	are	different	for	non-parametric	rules	and	parametric-associative	rules	
(pRule).	The	former	names	end	with	‘3D’,	the	latter	names	with	‘P3D’.	Sortal	structures	
corresponding	to	different	spatial	element	types	are	combined	under	the	operation	of	sum	
on	sortal	structures.	The	result	is	a	composite	sortal	structure,	e.g.,	curve3D = circle3D +
ellipse3D + arc3D + bezier3D.

SGI All Spatial Types

The	SGI All Spatial Types component	provides	a	list	of	all	spatialTypes	as	may	be	present	in	
shapes:	‘point’,	‘line	segment’,	‘plane	segment’,	‘circle’,	‘ellipse’,	‘circular	arc’	and	’quadratic	
Bezier’.

spatial	element	type sortal	structure

non-parametric	rules parametric-associative	rules

points point3D pointP3D

line	segments lineSeg3D lineSegP3D

plane	segments planeSeg3D planesegP3D

circles circle3D circleP3D

ellipses ellipse3D ellipseP3D

circular	arcs arc3D -

quadratic	Bezier	curves bezier3D bezierP3D

8

SGI Spatial Types

The	SGI Spatial Types selector	allows	to	select	from	a	list	of	spatialTypes	as	may	be	present	in	
shapes:	‘point’,	‘line	segment’,	‘plane	segment’,	‘circle’,	‘ellipse’,	‘circular	arc’	and	’quadratic	
Bezier’.

Non-spatial attribute types

The	SortalGI	engine	supports	three	non-spatial	attribute	types:	descriptions	(or	labels),	colors	
(or	grayscales)	and	line	thicknesses.

Descriptions	are	textual,	in	nature,	and	follow	a	strict	format	that	allows	them	to	be	
interpreted	and	matched	by	the	SortalGI	engine.	This	format	allows	for	quoted	strings	(e.g.,	
labels),	numbers,	vectors,	tuples	thereof,	etc.).	Descriptions	that	form	part	of	the	left-hand-
side	or	right-hand-side	of	a	rule	may	include	parameters,	expressions	and	references	to	other	
descriptions	or	to	spatial	elements	(see	section	11. Specifying shape descriptions).

Colors	can	be	grayscale	values	or	RGB	values,	depending	on	the	selected	color	mode.	The	
SortalGI	engine	distinguishes	six	color	modes:

There	are	two	ways	to	assign	a	color	attribute	to	a	spatial	element.	Firstly,	the	desired	color	
can	be	specified	directly	to	the	original	geometry	in	Rhino,	using	‘Custom’	(instead	of	‘by	
Layer’	or	‘by	Parent’).	‘Custom’	color	specifications	will	be	automatically	retrieved	when	
converting	the	geometry	into	a	shape	and	assigned	as	a	color	attribute	to	the	respective	
spatial	element.	Secondly,	the	SGI Attributed Shape	component	(see	section	6. Creating a
shape)	can	be	used	to	assign	a	color	to	a	spatial	element	when	creating	the	shape.	Note	that	
there	is	no	color	attribute	specified	for	points.

The	sortal	structure	for	descriptions	and	colors	is	different	for	each	spatial	element	type,	so	
as	to	be	able	to	reference	these	unambiguously	in	a	description.	The	sortal	structure	
corresponding	to	a	spatial	element	type	is	augmented	with	the	sortal	structures	of	the	
respective	attribute	types	under	the	operation	of	attribution	on	sortal	structures.	The	result	

color	mode explanation

graytone grayscale	values	between	0	(white)	and	255	(black);	the	sum	of	two	grayscale	
values	is	the	maximum	of	both	values.	Note	that	this	is	the	only	color	mode	where	
the	maximum	value	represents	black,	rather	than	white

opaque RGB	color	values;	the	sum	of	two	color	values	is	always	the	second	value

maxRGB RGB	color	values;	the	sum	of	two	color	values	has	as	RGB	values	the	maximum	
values	from	both	colors

sumRGB RGB	color	values;	the	sum	of	two	color	values	has	as	RGB	values	the	sum	of	the	
respective	RGB	values	from	both	colors

avgRGB RGB	color	values;	the	sum	of	two	color	values	has	as	RGB	values	the	average	of	
the	respective	RGB	values	from	both	colors

alphaRGB RGB	color	values	and	alpha	value;	the	sum	of	two	color	values	is	dependent	on	
their	respective	alpha	values

9

is	a	composite	sortal	structure,	e.g.,	attrCircle3D = circle3D ^ (cColor + cLabelD +
cThickness).

Note	that	descriptions	may	also	occur	as	color	attribute	(but	not	yet	as	line	thickness	
attribute)	within	a	rule,	in	order	to	retrieve	or	assign	color	values	within	the	rule	(see	section	
6. Creating a shape).	However,	this	is	not	(yet)	applicable	to	the	‘graytone’	colorMode.

SGI Attribute Types

The	SGI Attribute Types component	provides	a	list	of	all	attribute types	that	may	be	present	
as	non-spatial	attributes	in	shapes:	‘labelD’,	‘color’	and	‘thickness’.

SGI All Color Modes

The	SGI All Color Modes component	provides	a	list	of	all	colorModes	that	may	apply	to	color	
attributes:	‘graytone’,	‘opaque’,	‘maxRGB’,	‘sumRGB’,	‘avgRGB’	and	‘alphaRGB’.

SGI Color Modes

The	SGI Color Modes selector	allows	to	select	from	a	list	of	colorModes	that	may	apply	to	
color	attributes:	‘graytone’,	‘opaque’,	‘maxRGB’,	‘sumRGB’,	‘avgRGB’	and	‘alphaRGB’.

Description types

Descriptions	can	be	assigned	as	attributes	to	spatial	elements,	but	descriptions	can	also	from	
part	of	the	shape	alongside	spatial	elements.	In	the	case	of	descriptions	as	attribute,	a	single	
sortal	structure	is	already	made	available	to	contain	these	descriptions.	When	descriptions	
form	a	direct	part	of	the	shape,	there	may	be	a	need	to	distinguish	descriptions	by	purpose.	
For	this	reason,	the	SGI Setup	component	(see	section 5. Starting on a SortalGI-based
parametric model)	accepts	a	list	of	description	type	names,	each	an	identifier,	consisting	only	
of	letters,	digits	and/or	underscores	and	always	starting	with	a	letter	or	underscore.	For	each	
description	type	name,	a	corresponding	sortal	structure	is	defined	and	made	part	of	the	
global	sortal	structure	or	shape	representational	structure.	For	example,	in	the	case	of	two	
description	type	names	designBrief	and	temporaryDescriptions,	the	resulting	sortal	structure	
for	shapes	forming	part	of	non-parametric	rules	would	be:

non-spatial	attribute	type labels/descriptions colors line	thicknesses

spatial	element	type sortal	structure

points pLabelD

line	segments lLabelD lColor lThickness

plane	segments plLabelD plColor

circles cLabelD cColor cThickness

ellipses eLabelD eColor eThickness

circular	arcs aLabelD aColor aThickness

quadratic	Bezier	curves bLabelD bColor

10

bezier3D	^	bLabelD	+	circle3D	^	cLabelD	+	designBrief	+	ellipse3D	^	eLabelD	+	lineSeg3D	^	
lLabelD	+	planeSeg3D	^	plLabelD	+	point3D	^	pLabelD	+	temporaryDescriptions

11

5. Starting on a SortalGI-based parametric model

Creating a new parametric model using SortalGI components

Before	adding	any	other	SGI	component,	you	should	first	add	the	SGI	Setup	component.	This	
component	initializes	the	SortalGI	engine	and	makes	all	functionality	available	to	the	model.

If,	instead,	you	add	the	SGI Setup	component	after	other	SGI	components,	you	must	
arrange/put	the	component	to	the	back	(Ctrl+B	or	⇧⌘B)	to	ensure	that	the	SGI Setup	
component	is	executed	before	all	other	components.

SGI Setup

The	SGI Setup	component	initializes	the	SortalGI	engine	and	allows	for	some	global	settings.

Inputs:

− displacementX:	optional	displacement	value	along	the	X-axis	for	the	purpose	of	
translating	any	shape	resulting	from	a	rule	application;	if	no	displacement	value	is	
specified,	then	the	rule	application	will	automatically	derive	the	translation	distance	
from	the	bounding	box	of	the	shape	(see	section	9. Applying a rule)

− displacementY:	optional	displacement	value	along	the	Y-axis	for	the	purpose	of	
translating	and	spacing	multiple	shapes	resulting	from	a	rule	application;	if	no	
displacement	value	is	specified,	then	the	rule	application	will	automatically	derive	the	
translation	distance	from	the	bounding	box	of	the	shape	(see	section	9. Applying a
rule)

− textSize:	text	size	to	visualize	any	labels	or	shape	descriptions	that	are	attributes	to	
geometries	resulting	from	a	SortalGI	component

− descriptionTypes:	list	of	shape	description	Types,	each	identified	by	its	name	(see	
section 8. Specifying shape descriptions	for	a	specification	of	descriptions)

− colorMode:	colorMode,	or	a	data	tree	of	spatialType	and	colorMode	pairs,	governing	
how	two	color	values,	as	attributes	of	a	same	spatial	element,	combine	into	a	single	
value.	Options	are	‘graytone’,	‘opaque’,	‘maxRGB’,	‘sumRGB’,	‘avgRGB’	or	
‘alphaRGB’	(default	is	‘opaque’).

− precision:	number	of	significant	figures	used	for	calculations	and	matching.	Empirical	
evidence	has	shown	that	a	precision	of	6	to	8	significant	figures	tends	to	provide	the	
best	results	(default	is	8).

− reset:	Boolean	value	specifying	whether	to	reset	the	SortalGI	engine	(default	is	False)

Outputs:

− success:	True	or	False	indicating	success	of	the	setup

Opening an existing parametric model using SortalGI components

If	you	find	any	errors	with	SortalGI	components	upon	opening	an	existing	parametric	model,	
these	might	be	caused	by	having	older	components	embedded	in	the	existing	model	when	
compared	with	the	SortalGI	version	installed.

Firstly,	check	the	version	number	of	the	specific	component.	If	it	is	an	older	(or	different)	
version	number,	you	can	use	the	SGI Update	component	to	automatically	update	this	and	

12

any	other	components	to	the	installed	version.	Note	that	any	embedded	component	in	the	
parametric	model	contains	its	own	Python	code	and	updating	the	SortalGI	components	in	
the	‘UserObjects’	folder	does	not	automatically	update	the	embedded	components	in	the	
model.	The	SGI Update	component	will	update	both	the	SortalGI	components	in	the	
‘UserObjects’	folder	(if	instructed	to	do	so)	and	the	embedded	components	in	the	current	
parametric	model.

Secondly,	if	the	version	number	does	correspond	to	the	installed	version,	instead,	the	
problem	may	relate	to	a	difference	in	inputs	and/or	outputs	between	the	specific	embedded	
component	in	the	model	and	the	component	present	in	the	Grasshopper	Components	Tab	
Panel.	In	this	case,	you	must	replace	the	embedded	component	and	all	its	connections	using	
the	available	component.

SGI Update

The	SGI Update	component	updates	the	Python	codes	in	the	embedded	components	in	the	
parametric	model	to	the	specified	SortalGI	version.	If	specified,	it	will	also	update	the	
components	in	the	Grasshopper	Components	Tab	Panel.

Inputs:

− sourceDir:	optional	source	directory	where	the	SortalGI	components	should	be	
copied	from	into	the	‘UserObjects’	folder;	if	omitted,	then	only	the	Python	codes	of	
the	embedded	components	in	the	parametric	model	will	be	updated	to	the	current	
SortalGI	version	as	available	in	the	Grasshopper	Components	Tab	Panel

− updateThis:	Boolean	value	specifying	whether	to	execute	this	SGI Update	component	
(default	is	False)

Outputs:

− success:	True	or	False	value	indicating	success	of	the	update

13

6. Creating a shape

Creating	shapes	using	the	SGI Shape	or	SGI dShape	components	may	serve	different	
purposes.	Shapes	can	be	operated	upon	directly	(e.g.,	sum,	difference	or	product).	A	shape	
can	be	used	to	define	the	left-hand-side	or	the	right-hand-side	of	a	rule.	Rule	application	also	
requires	an	input	shape	and,	optionally,	an	input	subshape	(see	section	9. Applying a rule).

A	shape	may	consist	of	points,	line	segments	and	plane	segments,	circles	and	ellipses,	
circular	arcs	and	quadratic	Bezier	curves,	as	well	as	shape	descriptions.	Points	may	have	
shape	descriptions	(or	labels)	and	colors	assigned	as	attributes.	The	SGI Text Point,	SGI Text
Curve	and	SGI Text Surface	components	allow	one	to	assign	a	label	or	shape	description	as	a	
text	to	a	point,	curve	or	surface.	Note	that	the	resulting	geometry	is	only	recognized	by	any	
of	the	SGI	components,	specifically	SGI Shape	or	SGI dShape.	Other	Grasshopper	
components	will	not	recognize	the	text	point/curve/surface.

The	SGI Shape	and	SGI dShape	components	differ	in	the	fact	that	the	latter	accepts	shape	
descriptions	using	an	extra	input,	while	the	former	does	not.

SGI Text Point

The	Text Point	component	creates	a	labelled	point	geometry,	that	is,	a	point	with	a	label	or	
shape	description	as	attribute.	A	label	must	be	double-quoted,	otherwise	it	will	be	
considered	a	shape	description.	The	component	can	also	be	used	to	tag	a	point	(see	
References in	section	11. Specifying shape descriptions).

Inputs:

− P:	point	geometry

− labelD:	optional	text	specifying	the	tag,	label	or	shape	Description	of	the	text	point	

(see	section	11. Specifying shape descriptions for	a	specification	of	descriptions);	
multiple	values	can	be	combined	into	a	single	entry	by	separating	them	with	vertical	
bars

− Tag:	optional	text	specifying	the	tag,	label	or	shape	Description	of	the	text	point;	
multiple	values	can	be	combined	into	a	single	entry	by	separating	them	with	vertical	
bars

Outputs:

− G:	resulting	text	point

SGI Text Curve

The	Text Curve	component	creates	a	labelled	curve	geometry,	that	is,	a	curve	with	a	label	or	
shape	description	as	attribute.	A	label	must	be	double-quoted,	otherwise	it	will	be	
considered	a	shape	description.	The	component	can	also	be	used	to	tag	a	curve	(see	
References in	section	11. Specifying shape descriptions).

Inputs:

− C:	curve	geometry

− labelD:	optional	text	specifying	the	tag,	label	or	shape	Description	of	the	text	curve	

(see	section	11. Specifying shape descriptions for	a	specification	of	descriptions);	

14

multiple	values	can	be	combined	into	a	single	entry	by	separating	them	with	vertical	
bars

− Tag:	optional	text	specifying	the	tag,	label	or	shape	Description	of	the	text	curve;	
multiple	values	can	be	combined	into	a	single	entry	by	separating	them	with	vertical	
bars

Outputs:

− G:	text	curve

SGI Text Surface

The	Text Surface	component	creates	a	labelled	surface	geometry,	that	is,	a	surface	with	a	
label	or	shape	description	as	attribute.	A	label	must	be	double-quoted,	otherwise	it	will	be	
considered	a	shape	description.	The	component	can	also	be	used	to	tag	a	surface	(see	
References in	section	11. Specifying shape descriptions).

Inputs:

− S:	surface	geometry

− labelD:	optional	text	specifying	the	tag,	label	or	shape	Description	of	the	text	surface	

(see	section	11. Specifying shape descriptions for	a	specification	of	descriptions);	
multiple	values	can	be	combined	into	a	single	entry	by	separating	them	with	vertical	
bars

− Tag:	optional	text	specifying	the	tag,	label	or	shape	Description	of	the	text	surface;	
multiple	values	can	be	combined	into	a	single	entry	by	separating	them	with	vertical	
bars

Outputs:

− G:	text	surface

SGI Shape

The	SGI Shape	component	creates	a	shape	from	geometry	and	an	optional	reference	point.

Inputs:

− G:	geometry	of	points,	lines,	polylines,	(flat)	surfaces,	meshes,	boundary	
representations,	circles,	ellipses,	(circular)	arcs,	quadratic	Bezier	curves	and/or	text	
elements;	any	part	of	the	geometry	not	recognized	will	be	ignored

− refP:	optional	reference	point;	if	specified,	the	geometry	will	be	moved	from	the	
reference	point	to	the	origin,	allowing	a	shape	that	will	serve	as	the	left-hand-side	or	
right-hand-side	to	a	rule	to	be	drawn	or	specified	spatially	separated	from	the	other	
side	of	the	rule

Outputs:

− Shape:	Shape	object

SGI dShape

The	SGI dShape	component	creates	a	shape	from	geometry,	shape	descriptions	(see	section
11. Specifying shape descriptions)	and	an	optional	reference	point.	The	descriptions	may	be	
omitted,	so	may	be	the	geometry,	though	not	both	at	the	same	time.

Inputs:

15

− G:	geometry	of	points,	lines,	polylines,	(flat)	surfaces,	meshes,	boundary	
representations,	circles,	ellipses,	(circular)	arcs,	quadratic	Bezier	curves	and/or	text	
elements;	any	part	of	the	geometry	not	recognized	will	be	ignored

− Description:	one	or	more	shape	Descriptions,	each	item	preceded	by	the	shape	
description	Type	and	a	colon;	multiple	shape	descriptions	of	the	same	type	can	be	
combined	into	a	single	item	by	separating	them	with	a	vertical	bar

− refP:	optional	reference	point;	if	specified,	the	geometry	will	be	moved	from	the	
reference	point	to	the	origin,	allowing	a	shape	that	will	serve	as	the	left-hand-side	or	
right-hand-side	to	a	rule	to	be	drawn	or	specified	spatially	separated	from	the	other	
side	of	the	rule

Outputs:

− Shape:	Shape	object

SGI Attributed Shape

The	SGI Attributed Shape	component	creates	a	shape	from	geometry	and,	optionally,	
attribute	colors	and/or	thicknesses,	shape	descriptions	(see	section 11. Specifying shape
descriptions)	and	an	optional	reference	point.	The	descriptions	may	be	omitted,	so	may	be	
the	geometry,	though	not	both	at	the	same	time.

Inputs:

− G:	geometry	of	points,	lines,	polylines,	(flat)	surfaces,	meshes,	boundary	
representations,	circles,	ellipses,	(circular)	arcs,	quadratic	Bezier	curves	and/or	text	
elements;	any	part	of	the	geometry	not	recognized	will	be	ignored

− C:	optional	one	or	more	colors,	or	descriptions	referencing	color	values	(the	latter	
only	within	a	rule)

− thickness:	optional	one	or	more	line	thickness	values,	expressed	as	print	width	
(between	0.0	and	2.0)

− Description:	optional	one	or	more	shape	Descriptions,	each	item	preceded	by	the	
shape	description	Type	and	a	colon;	multiple	shape	descriptions	of	the	same	type	can	
be	combined	into	a	single	item	by	separating	them	with	a	vertical	bar

− refP:	optional	reference	point;	if	specified,	the	geometry	will	be	moved	from	the	
reference	point	to	the	origin,	allowing	a	shape	that	will	serve	as	the	left-hand-side	or	
right-hand-side	to	a	rule	to	be	drawn	or	specified	spatially	separated	from	the	other	
side	of	the	rule

Outputs:

− Shape:	Shape	object

SGI S2G

The	SGI S2G	component	converts	any	shape	into	its	geometry,	colors	and	shape	
descriptions.

Inputs:

− Shape:	Shape	object

Outputs:

− G:	geometry	of	the	Shape	object

− M:	materials	(color)	for	custom	preview	of	the	geometry

16

− Description:	shape	Descriptions	of	the	Shape	object	(note	that	any	shape	description	
that	is	assigned	as	an	attribute	to	part	of	the	geometry	of	the	Shape	object	is	not	
included	as	it	already	forms	part	of	the	geometry)

17

7. Manipulating a shape

Following	the	creation	of	a	shape,	various	geometrical	operations	are	available	as	SortalGI	
components	to	act	upon	a	shape;	e.g.,	to	translate/move	a	shape,	rotate	a	shape,	reflect/
mirror	a	shape	and	scale	a	shape.	Each	of	these	components	takes	as	input	a	shape	and	any	
additional	data	required	to	inform	and	apply	the	transformation,	and	returns	the	resulting	
shape.	Their	operation	is	quite	identical	to	the	corresponding	Grasshopper	components,	
except	that	they	act	upon	a	shape.

In	addition,	there	are	SortalGI	components	to	union/sum	two	shapes,	intersect/take	the	
product	of	two	shapes	and	take	the	difference	of	one	shape	with	respect	to	another.

SGI Move Shape

The	SGI Move Shape	component	moves	a	shape	along	a	translation	vector.	This	component	is	
very	useful	to	ensure	the	visualization	of	shapes	resulting	from	rule	application	do	not	
overlap	and	are	properly	spaced	(see	section	9. Applying a rule).

Inputs:

− Shape:	Shape	object

− T:	translation	vector

Outputs:

− Shape:	resulting	Shape	object

SGI Rotate Shape

The	SGI Rotate Shape	component	rotates	a	shape	about	the	normal	vector	of	a	base	plane	by	
a	specified	angle.	

Inputs:

− Shape:	Shape	object

− A:	rotation	angle	in	radians

− P:	rotation	plane

Outputs:

− Shape:	resulting	Shape	object

SGI Mirror Shape

The	SGI Mirror Shape	component	mirrors	a	shape	about	a	base	plane.	

Inputs:

− Shape:	Shape	object

− P:	mirror	plane

Outputs:

− Shape:	resulting	Shape	object

SGI Scale Shape

The	SGI Scale Shape	component	scales	a	shape	about	a	center	of	scaling	uniformly	by	a	
specified	scaling	factor.

18

Inputs:

− Shape:	Shape	object

− C:	center	of	scaling

− F:	scaling	factor

Outputs:

− Shape:	resulting	Shape	object

SGI Sum

The	SGI Sum	component	sums	(combines)	two	shapes	together.

Inputs:

− Shape1:	Shape	object

− Shape2:	another	Shape	object

Outputs:

− Shape:	resulting	Shape	object

− T:	translation	vector	that	can	be	used	to	move/displace	the	resulting	shape	wrt	the	

original	shapes

SGI Product

The	SGI Product	component	determines	the	product	(intersection)	of	two	shapes.

Inputs:

− Shape1:	Shape	object

− Shape2:	another	Shape	object

Outputs:

− Shape:	resulting	Shape	object

− T:	translation	vector	that	can	be	used	to	move/displace	the	resulting	shape	wrt	the	

original	shapes

SGI Difference

The	SGI Difference	component	takes	the	difference	(complement)	of	one	shape	with	respect	
to	another	shape.

Inputs:

− Shape1:	Shape	object

− Shape2:	another	Shape	object

Outputs:

− Shape:	resulting	Shape	object

− T:	translation	vector	that	can	be	used	to	move/displace	the	resulting	shape	wrt	the	

original	shapes

SGI Sum All

The	SGI Sum All	component	sums	(combines)	any	number	of	shapes	together.

Inputs:

− Shapes:	list	of	Shape	objects

Outputs:

19

− Shape:	resulting	Shape	object

− T:	translation	vector	that	can	be	used	to	move/displace	the	resulting	shape	wrt	the	

original	shapes

20

8. Creating a rule

A	rule	is	conceptually	specified	in	the	form	lhs	→	rhs,	where	the	left-hand-side	(lhs)	of	the	
rule	specifies	the	pattern	to	be	matched	under	some	transformation	and	the	right-hand-side	
(rhs)	specifies	the	resulting	pattern	that	replaces	the	matched	pattern	under	the	same	
transformation.	That	is,	applying	a	rule	a	→	b	to	a	given	shape	s	involves	determining	a	
transformation	f	such	that	f(a)	is	a	part	of	s	(f(a)	≤	s),	following	which	s	is	replaced	by	s	–	f(a)	
+	f(b).

A	shape	rule	is	commonly	understood	to	imply	that	both	lhs	and	rhs	constitute	a	geometry,	
possibly	including	non-geometric	attributes,	e.g.,	labels	or	descriptions.	A	description	rule,	
then,	implies	that	both	lhs	and	rhs	constitute	a	shape	description	of	the	same	shape	
description	type.	Combining	a	shape	rule	with	one	or	more	description	rules	specifies	a	
compound	rule,	where	the	different	component	rules	operate	in	parallel,	although	they	may	
interact	with	each	other.

A	Rule	object	specifies	such	a	compound	rule	although	it	can	be	used	to	specify	a	shape	rule	
or,	alternatively,	one	or	more	description	rules.	That	is,	which	component	rules	are	included	
depends	on	the	shapes	that	are	provided	as	lhs	and	rhs	of	the	(compound)	rule.	If	the	lhs	
does	not	include	any	geometry,	then	the	rhs	may	not	include	any	geometry	either,	as	no	
matching	transformation	can	be	determined	from	an	empty	shape.	With	respect	to	shape	
descriptions,	if	either	the	lhs	or	rhs	includes	a	shape	description	type	but	the	other	side	does	
not,	then	an	empty	shape	description	of	that	type	is	automatically	included	in	the	other	side	
to	ensure	a	full	correspondence	between	shape	description	types.

Two	types	of	rules	are	distinguished,	parametric-associative	rules	and	non-parametric	rules.	
The	latter	are	the	easiest	to	understand.	In	the	case	of	a	non-parametric	rule,	the	pattern	
specified	by	the	lhs	of	the	rule	must	match	a	part	of	the	given	shape	under	a	similarity	
transformation	(translation,	rotation,	reflection	and/or	uniform	scaling).	That	is,	when	
matching	for	a	square	of	line	segments,	any	square	of	line	segments	from	the	given	shape	
will	do,	even	if	these	line	segments	extend	beyond	the	corner	points	of	the	square.	The	same	
applies	when	matching	for	a	rectangle,	however,	only	rectangles	with	the	same	ratio	
between	length	and	width	will	be	matched.

A	parametric-associative	rule	matches	a	much	larger	variety	of	shapes.	In	principle,	when	
matching	a	triangle	of	line	segments,	any	triangle	of	line	segments	in	the	given	shape	will	be	
matched,	irrespective	of	its	shape.	The	corresponding	transformation	is	a	topological	
transformation	though	there	is	no	mathematical	representation	for	such	a	transformation	
(unlike	for	a	similarity	transformation).	However,	some	constraints	do	apply.	Specifically,	
colinear,	parallel	and	perpendicular	lines	(and	points)	are	automatically	identified	in	the	lhs	
and	considered	as	constraints	for	matching.	Thus,	specifying	a	right-angled	triangle	as	the	lhs	
will	only	match	right-angled	triangles	in	the	given	shape,	however,	specifying	an	equilateral	
or	isosceles	triangle	as	the	lhs	will	have	no	effect,	any	triangle	in	the	given	shape	will	be	
matched.

While	in	some	cases	it	may	be	difficult	to	predict	the	exact	matching	results	of	the	lhs	of	a	
parametric-associative	rule,	the	matching	mechanism	broadly	follows	the	following	steps:

1. Identify	all	(infinite)	lines	that	carry	any	line	segment	in	the	lhs.

2. Identify	all	(infinite)	lines	that	carry	any	line	segments	in	the	given	shape.

21

3. Enumerate	all	combinations	of	lines	from	the	given	shape	that	match	the	number	of	
lines	for	the	lhs.

4. Eliminate	all	combinations	that	do	not	preserve	parallelism	and	perpendicularity	
between	lines	as	specified	by	the	lhs.

5. Identify	all	intersection	points	of	(infinite)	lines	in	the	lhs	and	note	whether	the	
intersection	point	falls	inside,	outside	or	is	an	endpoint	of	any	line	segment	on	each	
infinite	line.

6. Do	the	same	for	the	remaining	combinations	of	(infinite)	lines	for	the	given	shape:

a. Eliminate	any	combinations	where	an	inside	intersection	point	for	the	lhs	is	

not	matched	with	an	inside	intersection	point	for	the	given	shape.

b. Eliminate	any	combinations	where	an	intersection	point	that	is	an	endpoint	

for	the	lhs	is	not	matched	with	an	intersection	point	that	is	either	an	endpoint	
or	an	inside	point	for	the	given	shape.

7. For	the	lhs,	identify	all	endpoints	of	line	segments	on	these	(infinite)	lines	and	note	
their	ordering	also	with	respect	to	the	inside	intersection	points.

8. Do	the	same	for	the	given	shape	and	eliminate	any	remaining	combinations	where	
two	intersection	points	in	the	lhs	are	contained	within	a	single	line	segment	and	the	
corresponding	intersection	points	in	the	given	shape	are	not.	

A	similar	mechanism	applies	to	plane	segments.

SGI Rule

The	SGI Rule	component	creates	a	non-parametric	rule	from	a	left-hand-side	(lhs)	and	a	
right-hand-side	(rhs)	shape,	a	name,	a	(optional)	brief	description,	and	any	number	of	
predicates	(see	section	12. Specifying predicates).	If	a	shape	description	type	is	present	as	
part	of	one	shape	(lhs	or	rhs)	but	absent	from	the	other	shape,	an	empty	shape	description	
of	that	type	is	automatically	added	to	the	other	shape	within	the	rule.

Inputs:

− Name:	rule	Name	(may	contain	only	letters,	digits	and	underscores,	not	starting	with	
a	digit);	this	rule	name	should	be	unique

− text:	optional,	brief	description	of	the	rule

− lhShape:	Shape	object	representing	the	left-hand-side	of	the	rule

− Predicate:	optional	Predicate	or	list	thereof

− rhShape:	Shape	object	representing	the	right-hand-side	of	the	rule

Outputs:

− Rule:	non-parametric	Rule	object

SGI pRule

The	SGI pRule	component	creates	a	parametric-associative	rule	from	a	left-hand-side	(lhs)	
and	a	right-hand-side	(rhs)	shape,	a	name,	a	(optional)	brief	description,	and	any	number	of	
predicates	and/or	directives	(see	sections	12. Specifying predicates	and	13. Specifying
directives).	If	a	shape	description	type	is	present	as	part	of	one	shape	(lhs	or	rhs)	but	absent	

22

from	the	other	shape,	an	empty	shape	description	of	that	type	is	automatically	added	to	the	
other	shape	within	the	rule.

Inputs:

− Name:	rule	Name	(may	contain	only	letters,	digits	and	underscores,	not	starting	with	
a	digit);	this	rule	name	should	be	unique

− text:	optional,	brief	description	of	the	rule

− lhShape:	Shape	object	representing	the	left-hand-side	of	the	rule

− Predicate:	optional	Predicate	or	list	thereof

− rhShape:	Shape	object	representing	the	right-hand-side	of	the	rule

− Directive:	optional	Directive	or	list	thereof

Outputs:

− pRule:	parametric-associative	Rule	object

SGI Rule Info

The	SGI Rule Info	component	deconstructs	any	(parametric-associative	or	non-parametric)	
rule	into	its	left-hand-side	and	right-hand-side	shapes,	its	rule	name	and	description,	and	its	
predicates	and	directives,	if	any.

Inputs:

− Rule:	Rule	object

Outputs:

− Name:	rule	Name

− text:	rule	description

− lhShape:	left-hand-side	Shape	object

− Predicate:	zero,	one	or	more	Predicates

− rhShape:	right-hand-side	Shape	object

− Directive:	zero,	one	or	more	Directives

SGI Get Rule

The	SGI Get Rule component	retrieves	a	(parametric-associative	or	non-parametric)	rule	or	
flow	(see	section 10. Creating and applying flows (composite rules))	by	its	name.

Inputs:

− Name:	rule	or	flow	Name

Outputs:

− Rule:	(non-parametric	or	parametric-associative)	Rule	or	Flow	object	(or	null)

− is_Rule:	Boolean	value	indicating	whether	the	object	is	a	Rule	(True)	or	Flow	(False)	

object

SGI All Rules

The	SGI All Rules component	retrieves	a	list	of	all	existing	(parametric-associative	or	non-
parametric)	rules	and	flows	and	their	names.

No	inputs:

23

Outputs:

− ruleNames:	list	of	all	rule	Names

− Rules:	list	of	all	(parametric-associative	or	non-parametric)	Rule	objects

− flowNames:	list	of	all	flow	Names

− Flows:	list	of	all	Flow	objects

Importing SortalGI rules from a different parametric model

Rules	and	flows	(see	section 10. Creating and applying flows (composite rules))	created	using	
SortalGI	components	in	one	parametric	model	can	be	exported	to	a	text	file	and	
subsequently	imported	into	another	parametric	model	to	be	applied	there.	The	SGI Export	
component	exports	any	number	of	rules	and	flows	into	a	text	file	in	the	SDL	(Sortal	
Description	language)	format.	The	SGI Import	component	imports	any	text	file	in	the	SDL	
format	and	makes	the	rules	and	flows	available	for	rule	application.

SGI Export

The	SGI Export	component	writes	any	number	of	rules	and/or	flows	(see	section 10.
Creating and applying flows (composite rules))	into	a	text	file	in	the	SDL	(Sortal	Description	
language)	format.	Note	that	if	the	file	already	exists,	its	content	will	be	overwritten.

Inputs:

− filePath:	file	path	the	rules	and	flows	will	be	written	to

− Rules:	list	of	Rule	and/or	Flow	objects

No	outputs.

SGI Import

The	SGI Import	component	reads	a	text	file	in	the	SDL	(Sortal	Description	language)	format	
and	makes	the	rules	and/or	flows	available	for	application.

Inputs:

− filePath:	the	path	of	the	SDL	file	that	the	rules	and	flows	will	be	read	from

Outputs:

− rules:	list	of	Rule	objects

− flows:	list	of	Flow	objects

− messages:	list	of	messages	indicating	success	or	failure	reading	the	file	and	creating	

the	Rule	or	Flow	objects

24

9. Applying a rule

Applying	a	rule	to	a	given	shape	involves	determining	a	transformation	under	which	the	left-
hand-side	(lhs)	of	the	rule	is	a	part	of	the	given	shape.	That	is,	rule	application	involves	two	
steps:	recognition	and	manipulation	(search	and	replace);	recognition	implies	matching	the	
lhs	of	the	rule	under	some	transformation	to	a	part	of	the	given	shape	and	manipulation	
implies	replacing	the	recognized	lhs	by	the	right-hand-side	(rhs)	of	the	shape	rule	under	the	
same	transformation.

Obviously,	the	lhs	of	a	shape	rule	may	match	multiple	parts	of	the	same	given	shape.	These	
matches	may	correspond	to	different	but	similar	parts,	e.g.,	if	the	lhs	of	a	non-parametric	
rule	specifies	a	square,	the	rule	will	match	any	square	in	the	given	shape	independent	of	its	
location,	rotation,	reflection	or	scale	(under	a	similarity	transformation).	However,	these	
matches	may	also	apply	to	the	same	part	in	different	ways.	Again,	if	the	lhs	of	a	non-
parametric	rule	specifies	a	square,	which	has	90°	rotational	symmetry,	and	the	rhs	specifies	
the	same	square	moved	diagonally,	then	any	square	in	the	given	shape	will	amount	to	four	
matches	as	the	square	may	be	moved	into	any	of	its	four	diagonal	directions.

The	SortalGI	plug-in	distinguishes	four	rule	application	components:	the	first	one,	SGI Apply,	
applies	only	a	single	match	(either	randomly	selected	or	specified	by	its	index),	while	the	
second	one,	SGI Apply All,	applies	all	matches	in	parallel,	returning	as	many	results	as	there	
are	matches,	and	the	third	one,	SGI Apply All Together,	applies	all	(or	a	selection	of)	
matches	together	(in	parallel),	returning	a	single,	combined	result.	The	fourth	one,	SGI
Derive,	takes	a	series	of	rules	as	input	and	applies	each	rule	in	sequence,	returning	all	
intermediate	results	as	well	as	the	final	result.	All	four	components	accept	both	a	shape	and	
an	optional	subshape.	If	specified,	the	latter	must	be	a	subshape,	that	is,	part	of,	the	former.	
If	a	subshape	is	specified	then	recognition/matching	is	restricted	to	the	subshape.	This	allows	
one	to	reduce	the	number	of	matches	where	appropriate.	Manipulation	will	always	apply	to	
the	entire	shape.

Finally,	a	fifth	component,	SGI Matches,	does	not	actually	apply	the	given	rule	but,	instead	
yields	all	the	matching	shapes	to	the	left-hand-side	of	the	rule.	As	such,	the	Matches	
component	can	be	used	to	search	for	a	given	shape.	As	the	results	will	be	returned	in	a	list,	
serving	this	list	as	input	to	a	rule	application	component	will	ensure	rule	application	(both	
recognition	and	manipulation)	applies	separately	to	each	result,	if	possible,	allowing	for	a	
divide-and-conquer-approach	that	may	be	more	efficient	for	subsequent	rule	applications.

For	any	of	these	components,	every	resulting	shape	is	accompanied	by	a	translation	vector.	
In	the	case	of	SGI Apply (and SGI Apply All Together),	the	translation	vector	allows	the	
resulting	shape	to	be	visualized	aside	from	the	original	shape,	along	the	X-axis.	In	the	case	of	
SGI Apply All (and SGI Matches),	the	translation	vectors	allow	the	resulting	shapes	to	be	
visualized	one	above	the	other,	along	the	Y-axis,	and	aside	from	the	original	shape,	along	the	
X-axis.	In	the	case	of	SGI Derive,	the	translation	vectors	allow	the	resulting	shapes	to	be	
visualized	one	aside	from	the	other,	and	from	the	original	shape,	along	the	X-axis.	The	extent	
of	the	translation	vector	is	specified	by	the	displacementX	and	displacementY	values	
provided	to	the	SGI Setup	component	or,	if	no	value	is	provided,	by	the	bounding	box	of	the	
original	shape	(see	section	3. Starting on a SortalGI-based parametric model).

All	rule	application	components	accept	parametric-associative	and	non-parametric	rules.

25

SGI Apply

The	SGI Apply	component	determines	all	possible	matches	of	a	rule	with	respect	to	a	shape	
(or	subshape),	but	applies	only	a	single	one,	either	randomly	selected	or	as	specified	by	an	
index	value.

Inputs:

− Rule:	Rule	object

− Shape:	Shape	object	to	apply	the	rule	to

− subShape:	optional	Shape	object	to	restrict	matches	to;	if	specified,	this	shape	must	

be	a	subshape,	that	is,	part	of,	the	shape	Shape

− i:	optional	index	to	select	which	match	to	consider	for	rule	application;	a	value	of	–1	

(default)	selects	a	random	match,	any	number	outside	the	index	range	yields	the	last	
one	among	the	list	of	matches

Outputs:

− Shape:	Shape	object	resulting	from	rule	application;	if	no	match	is	found	then	the	

original	shape	is	returned

− T:	translation	vector	to	allow	the	shape	to	be	drawn	next	to	the	original	shape,	along	

the	X-axis

− success:	True	or	False	indicating	whether	a	match	was	found	or	not

SGI Apply All

The	SGI Apply All	component	determines	and	applies	all	possible	matches	of	a	rule	with	
respect	to	a	shape	(or	subshape).

Inputs:

− Rule:	Rule	object

− Shape:	Shape	object	to	apply	the	rule	to

− subShape:	optional	Shape	object	to	restrict	matches	to;	if	specified,	this	shape	must	

be	a	subshape,	that	is,	part	of,	the	shape	Shape

Outputs:

− Shapes:	list	of	Shape	objects	corresponding	to	the	number	of	rule	applications	found;	
if	no	match	is	found	then	the	original	shape	is	returned

− n:	number	of	matches	found,	corresponds	to	the	length	of	the	lists	Shapes	and	T

− T:	list	of	translation	vectors	to	allow	the	shapes	to	be	drawn	one	above	the	other,	

along	the	Y-axis,	and	next	to	the	original	shape,	along	the	X-axis

− success:	True	or	False	indicating	whether	at	least	one	match	was	found	or	not

SGI Apply All Together

The	SGI Apply All Together	component	determines	and	applies	(in	parallel)	all	or	a	specified	
selection	of	possible	matches	of	a	rule	with	respect	to	a	shape	(or	subshape),	and	combines	
them	into	a	single	shape.	This	behavior	corresponds	to	the	shape	schema	x	→	Σ	F(prt(x))	
when	F	refers	to	a	single	rule.

26

Inputs:

− Rule:	Rule	object

− Shape:	Shape	object	to	apply	the	rule	to

− subShape:	optional	Shape	object	to	restrict	matches	to;	if	specified,	this	shape	must	

be	a	subshape,	that	is,	part	of,	the	shape	Shape

− i:	optional	list	of	indices	to	select	which	matches	to	include	in	the	result;	in	case	of	an	

empty	list	all	matches	are	included

Outputs:

− Shape:	Shape	object	resulting	from	all	or	the	specified	selection	of	rule	applications;	if	
no	match	is	found	then	the	original	shape	is	returned

− T:	translation	vector	to	allow	the	shape	to	be	drawn	next	to	the	original	shape,	along	
the	X-axis

− success:	True	or	False	indicating	whether	a	match	was	found	or	not

SGI Derive

The	SGI Derive	component	acts	as	a	sequence	of	SGI Apply	components.	Given	a	list	of	
rules,	it	applies	each	in	sequence.

Inputs:

− Rules:	list	of	Rule	objects

− Shape:	Shape	object	to	apply	the	first	rule	to

− subShape:	optional	Shape	object	to	restrict	the	first	match	to,	or	a	list	of	shape	objects	

to	restrict	consecutive	matches	to;	if	specified,	the	shape	must	be	a	subshape,	that	is,	
part	of,	the	input	shape	of	the	respective	rule

− i:	optional	index	to	select	which	matches	to	consider	for	rule	application;	a	value	of	–
1	(default)	selects	a	random	match,	any	number	outside	the	index	range	yields	the	
last	one	among	the	list	of	matches;	may	be	specified	as	a	list	of	indices

− runIt:	Boolean	value	specifying	whether	to	execute	the	component	or	not

Outputs:

− Shapes:	list	of	Shape	objects,	one	for	each	successful	rule	application;	if	no	match	is	
found	for	any	rule	then	the	input	shape	for	the	first	rule	is	returned

− n:	number	of	successful	rule	applications,	corresponds	to	the	length	of	the	lists	
Shapes	and	T	if	greater	than	0

− T:	list	of	translation	vectors	to	allow	the	shapes	to	be	drawn	one	next	to	the	other	
and	to	the	original	shape,	along	the	X-axis

− success:	list	of	True	or	False	values	indicating	for	each	rule	object	whether	at	least	
one	match	was	found	or	not

SGI Matches

The	SGI Matches	component	determines	all	possible	matches	of	a	rule	with	respect	to	a	
shape.	Note	that	depending	on	the	right-hand-side	of	the	rule,	identical	matches	may	result	
corresponding	to	otherwise	distinct	rule	applications.

Inputs:

− Rule:	Rule	object

27

− Shape:	Shape	object	to	match	the	rule	to

Outputs:

− Shapes:	list	of	Shape	objects	corresponding	to	the	rule	matches

− n:	number	of	matches	found,	corresponds	to	the	length	of	the	lists	Shapes	and	T

− T:	list	of	translation	vectors	to	allow	the	shapes	to	be	drawn	one	above	the	other,	

along	the	Y-axis,	and	next	to	the	original	shape,	along	the	X-axis

− success:	True	or	False	indicating	whether	at	least	one	match	was	found	or	not

28

10. Creating and applying flows (composite rules)

Flows	are	composite	rules	embedding	algorithmic	patterns	such	as	sequence,	iteration	and	
selection.	Two	rules	apply	in	sequence	if	upon	a	successful	application	of	the	first	rule,	the	
second	rule	applies	to	the	result	from	the	application	of	the	first	rule.	Similarly,	a	single	rule	
can	be	applied	iteratively	if	upon	every	successful	application	of	the	rule,	a	new	application	is	
attempted	on	the	result	of	the	last	successful	application.	Selection,	on	the	other	hand,	
specifies	two	(or	more)	alternative	rules,	where	each	may	be	attempted	to	be	applied	but,	as	
soon	as	one	rule	applies	successfully,	the	remaining	rules	are	ignored.

A	conceptual,	diagrammatic	representation	of	the	three	algorithmic	patterns	sequence	(left),	
iteration	(middle)	and	selection	(right):

In	the	diagrams	above,	rule	application	flows	from	left	to	right,	starting	from	the	dot	and	
continuing	with	rule	r1.	Upon	successful	(S)	application	of	rule	r1,	the	application	flow	
continues	as	indicated.	Upon	failure	(F),	depending	on	the	pattern	and	its	parameters,	the	
application	flow	may	continue	(solid	arrow)	or	backtracking	may	occur	(dashed	arrow).	Note	
that	backtracking	is	a	more	complex	process	of	revisiting	previous	rules	in	search	of	
alternative	solutions	that	cannot	be	fully	captured	in	the	diagrams	above.	In	general,	a	rule	
may	have	multiple	potential	applications	and,	within	a	flow,	only	one	application	will	be	
selected	to	proceed	with.	Backtracking,	then,	may	lead	to	the	subsequent	selection	of	an	
alternative	application	to	proceed	with.	In	a	sequence,	every	rule	must	apply	successfully,	or	
none	at	all	will	apply.	An	iteration	customarily	ends	at	some	point.	Whether	this	ending	is	
considered	success	(and	the	flow	proceeds)	or	failure	(and	backtracking	occurs)	is	dependent	
on	the	minimum	number	of	iterations	specified.	A	selection	only	fails	if	all	of	its	rules	fail	to	
apply.	Note	that	any	rule	within	a	flow	may	itself	be	composed	as	a	flow,	such	that	flows	can	
be	hierarchically	composed	of	sub-flows,	each	with	their	own	pattern	of	sequence,	iteration	
or	selection.

Flow matching approaches

Backtracking	can	be	suppressed	by	adopting	a	possessive	matching	approach	rather	than	a	
greedy	matching	approach,	as	is	the	default.	Specifically,	assigning	a	possessive	matching	
approach	to	a	sub-flow	ensures	that	when	this	sub-flow	has	successfully	applied,	no	
backtracking	to	this	sub-flow	will	occur	from	any	later	point	in	the	super-flow.	However,	
backjumping	may	occur	to	any	non-possessive	sub-flow	that	precedes	the	possessive	sub-
flow,	upon	which	the	flow	application	may	eventually	return	to	the	possessive	sub-flow.	
Obviously,	if	every	sub-flow	is	assigned	a	possessive	matching,	backjumping	will	be	
suppressed	as	well.

An	alternative	to	greedy	and	possessive	matching	is	lazy	matching.	Where	greedy	(and	
possessive)	matching	will	iterate	until	failure	or	the	maximum	number	of	iterations	has	been	
achieved,	lazy	matching	will	end	an	iteration	as	soon	as	the	minimum	number	of	iterations	
has	been	achieved.	Similar	to	greedy	matching,	backtracking	may	occur,	but	in	the	case	of	
iterative	backtracking	under	lazy	matching,	an	additional	iteration	will	be	tried	rather	than	
backtracking	to	the	previous	iteration.

Finally,	a	probabilistic	approach	to	iteration	is	provided	as	well.	In	this	case,	a	random	
number	of	times	to	iterate,	within	the	minimum-maximum	range,	will	be	selected	and	tried.

r1 S

F F

r2 r1
F

S r1

F

S

r2

F

S

S

29

SGI Flow Matching

The	SGI Flow Matching selector	allows	to	select	from	a	list	of	flow	Matching	approaches:	
greedy,	possessive,	lazy	and	probabilistic.

Iteration flow quantifiers

An	iteration	is	necessarily	defined	by	the	number	of	iterative	applications	that	are	expected	
or	allowed.	We	adopt	a	quantifier	(from	regular	expressions)	to	indicate	both	the	minimum	
and	maximum	number	of	iterations	allowed:

SGI Flow Quantifier

The	SGI Flow Quantifier selector	allows	to	select	from	a	sublist	of	iteration	flow	Quantifiers,	
specifically,	‘?’,	‘*’	and	‘+’.

SGI Flow Quantifier {n,m)

The	SGI Flow Quantifier {n,m} component	composes	an	iteration	flow	quantifier	from	a	
minimum	and	(optional)	maximum	value,	specifying,	respectively,	the	minimum	and	
maximum	number	of	times	a	flow	(structure)	would	be	iterated	upon.	If	a	maximum	value	is	
omitted,	the	flow	(structure)	would	be	iterated	upon	any	number	of	times,	but	at	least	the	
minimum	number	of	times.

Inputs:

− min:	minimum	number	of	times	a	flow	structure	would	be	iterated	upon

− max:	optional,	maximum	number	of	times	a	flow	would	be	iterated	upon

Outputs:

− Quantifier:	iteration	flow	Quantifier	expressed	as	text,	in	the	form	{min},	{min,}	or	

(min,	max}

quantifier
number	of	iterations

min max explanation

? 0 1 Zero	or	one	time	—	no	backtracking	occurs

* 0 - Zero,	one	or	more	times	—	the	iteration	proceeds	until	rule	
application	fails,	no	backtracking	occurs

+ 1 - One	or	more	times	—	the	iteration	proceeds	until	rule	application	
fails,	backtracking	only	occurs	if	the	rule	fails	at	the	very	first	time

{n} n n Exactly	n	times	—	the	iteration	proceeds	until	rule	application	fails,	
backtracking	occurs	if	fewer	than	n	applications	succeed

{n,} n - n	or	more	times	—	the	iteration	proceeds	until	rule	application	fails,	
backtracking	occurs	if	fewer	than	n	applications	succeed

{n,m} n m Any	number	of	times	between	n	and	m	—	the	iteration	proceeds	
until	rule	application	fails,	backtracking	occurs	if	fewer	than	n	
applications	succeed

30

Flow creation

The	SortalGI	plug-in	distinguishes	four	flow	creation	components.	The	first	creates	a	flow	
structure	as	a	composite	rule	embedding	a	sequence	pattern	and,	optionally,	an	iteration	
pattern	nesting	the	sequence	pattern.	The	second	does	the	same	for	a	selection	instead	of	a	
sequence	patterns.	The	third		creates	a	flow	structure	as	a	composite	rule	embedding	the	
negation	of	a	rule,	flow	or	flow	structure,	reversing	success	and	failure.	Finally,	the	last	
component	creates	a	proper	flow,	from	a	flow	structure,	a	flow	name	and	an	optional	
description.	In	addition,	a	list	component	serves	to	ensure	the	proper	ordering	of	rules	and/
or	flow	structures.

SGI List

The	SGI List component	is	an	auxiliary	component	that	constructs	a	list	from	any	number	of	
inputs.	Note	that	the	inputs	are	guaranteed	to	be	appended	to	the	list	in	order.

Inputs:

− x,	y:	by	default,	the	component	offers	two	input	parameters,	but	additional	input	
parameters	can	be	inserted;	all	inputs	specified	will	be	added	to	the	resulting	list

Outputs:

− L:	list	resulting	from	the	specified	number	of	inputs

SGI Rule Sequence

The	SGI Rule Sequence component	creates	a	rule	sequence	from	a	list	of	rules,	flows	and/or	
flow	structures	and,	optionally,	a	quantifier	and	matching	approach.	A	rule	sequence	is	a	
flow	structure	embedding	the	sequence	pattern.	It	applies	successfully	if	each	of	the	
component	rules	(or	flows)	applies,	in	order.	Backtracking	may	occur	within	the	sequence.	
The	optional	quantifier	serves	to	add	an	iteration	pattern	nesting	the	sequence	pattern,	
where	the	quantifier	specifies	the	minimum	and	maximum	number	of	times	the	sequence	
can	be	applied	iteratively.	

Inputs:

− Rs:	ordered	list	of	Rule	objects,	Flow	objects	and/or	R	(flow	structure)	objects	
(sequence,	disjunction	or	negation)

− Quantifier:	optional	Quantifier	specifying	how	many	times	the	sequence	may	or	
should	be	iterated	(one	of	‘?’,	‘*’,	‘+’,	‘{n}’,	{n,}’	or	‘{n,m}’);	default	is	no	iteration,	
which	is	equivalent	to	‘{1}’.

− Matching:	optional	Matching	approach	(greedy:	‘G’,	possessive:	‘PO’,	lazy:	‘L’,	or	
probabilistic:	‘PR’);	default	is	greedy.

Outputs:

− sequenceR:	R	(flow	structure)	object	(sequence)

− notation:	formal,	textual	specification	of	the	rule	sequence	(see	Appendix C: A formal

notation for flow descriptions for	an	explication	of	the	format)

SGI Rule Disjunction

The	SGI Rule Disjunction component	creates	a	rule	disjunction	from	a	list	of	rules,	flows	
and/or	flow	structures	and,	optionally,	a	quantifier,	matching	approach	and	ordering.	A	rule	

31

disjunction	is	a	flow	structure	embedding	the	selection	pattern.	It	applies	successfully	if	any	
one	of	the	component	rules	(or	flows)	applies.	The	component	rules	(or	flows)	are	tried	
either	in	the	order	specified,	or	in	a	random	order.	The	optional	quantifier	serves	to	add	an	
iteration	pattern	nesting	the	selection	pattern,	where	the	quantifier	specifies	the	minimum	
and	maximum	number	of	times	the	selection	can	be	applied	iteratively.

Inputs:

− Rs:	ordered	list	of	Rule	objects,	Flow	objects	and/or	R	(flow	structure)	objects	
(sequence,	disjunction	or	negation)

− Quantifier:	optional	Quantifier	specifying	how	many	times	the	selection	may	or	
should	be	iterated	(one	of	‘?’,	‘*’,	‘+’,	‘{n}’,	{n,}’	or	‘{n,m}’);	default	is	no	iteration,	
which	is	equivalent	to	‘{1}’.

− Matching:	optional	Matching	approach	(greedy:	‘G’,	possessive:	‘PO’,	lazy:	‘L’,	or	
probabilistic:	‘PR’);	default	is	greedy.

− ordering:	optional	Boolean	value	specifying	the	order	in	which	the	component	rules	
(or	flows)	are	tried;	default	(True)	is	in	the	order	specified,	otherwise	(False)	a	
random	order	is	applied

Outputs:

− disjunctionR:	R	(flow	structure)	object	(disjunction)

− notation:	formal,	textual	specification	of	the	rule	disjunction	(see	Appendix C: A

formal notation for flow descriptions for	an	explication	of	the	format)

SGI Rule Negation

The	SGI Rule Negation component	creates	a	rule	negation	from	a	single	rule,	flow	or	flow	
structure.	A	rule	negation	is	a	flow	structure	that	applies	successfully	only	if	application	of	
the	underlying	rule,	flow	or	flow	structure	fails	and	vice	versa	.	Note	that	a	rule	negation	only	
checks	whether	a	rule	applies	and	rule	application	itself	is	necessarily	suppressed,	as	rule	
application	would	imply	that	rule	negation	failed	and,	as	such,	backtracking	would	occur.

Inputs:

− R:	Rule	object,	Flow	object	or	R	(flow	structure)	object	(sequence	or	disjunction)

Outputs:

− negationR:	R	(flow	structure)	object	(negation)

− notation:	formal,	textual	specification	of	the	rule	negation	(see	Appendix C: A formal

notation for flow descriptions for	an	explication	of	the	format)

SGI Flow

The	SGI Flow component	creates	a	flow	from	a	rule,	flow	or	flow	structure	(sequence,	
disjunction	or	negation),	a	flow	name	and	an	optional,	brief	description.	A	flow	can	be	
considered	a	composite	rule;	as	such,	the	flow	name	must	not	only	be	unique	among	all	
flows	but	also	among	all	rules.

Inputs:

− Name:	flow	Name	(may	contain	only	letters,	digits	and	underscores,	not	starting	with	
a	digit);	this	flow	name	should	be	unique

− text:	optional,	brief	description	of	the	flow

− R:	Rule	object,	Flow	object	or	R	(flow	structure)	object	(sequence,	disjunction	or	

negation)

Outputs:

32

− Flow:	resulting	Flow	object

SGI Flow Info

The	SGI Flow Info component	provides	the	flow	name,	flow	description,	flow	specification	
and	the	list	of	rules	that	form	part	of	this	specification	of	the	flow.

Inputs:

− Flow:	Flow	object

Outputs:

− Name:	flow	Name

− text:	flow	description	

− notation:	formal,	textual	flow	specification

Flow application

The	SortalGI	plug-in	distinguishes	two	flow	application	components:	the	first	one,	SGI Apply
Flow,	accepts	any	flow	or	flow	structure,	and	returns	only	a	single	outcome,	while	the	
second	one,	SGI Apply All Flow,	accepts	any	flow	but	not	any	flow	structure,	and	returns	all	
outcomes	(as	can	be	determined	through	backtracking).	

For	either	components,	every	resulting	shape	is	accompanied	by	a	translation	vector.	In	the	
case	of	SGI Apply Flow,	the	translation	vector	allows	the	resulting	shape	to	be	visualized	
aside	from	the	original	shape,	along	the	X-axis.	In	the	case	of	SGI Apply All Flow,	the	
translation	vectors	allow	the	resulting	shapes	to	be	visualized	one	above	the	other,	along	the	
Y-axis,	and	aside	from	the	original	shape,	along	the	X-axis.	The	extent	of	the	translation	
vector	is	specified	by	the	displacementX	and	displacementY	values	provided	to	the	SGI Setup	
component	or,	if	no	value	is	provided,	by	the	bounding	box	of	the	original	shape	(see	section
5. Starting on a SortalGI-based parametric model).

SGI Apply Flow

The	SGI Apply Flow	component	determines	a	single	outcome	from	the	application	of	a	flow	
or	flow	structure	(sequence,	disjunction	or	negation)	onto	a	shape.

For	each	rule	in	the	flow	(or	flow	structure),	if	there	are	multiple	potential	rule	applications,	
by	default	a	random	selection	is	made,	although	this	behavior	can	be	overridden	by	setting	
the	random	parameter	input	to	False,	in	which	case	the	first	rule	application	is	always	
selected.	The	latter	ensures	the	same	result	each	time	the	flow	is	applied	to	the	same	shape.

Inputs:

− Flow:	Flow	object	or	R	(flow	structure)	object	(sequence,	disjunction	or	negation)

− Shape:	Shape	object	to	apply	the	flow	(or	flow	structure)	to

− random:	optional	Boolean	value	indicating	whether	a	random	(True,	default)	or	fixed	

(False)	selection	is	made	from	among	the	applications	for	one	rule;	a	fixed	selection	
yields	the	same	result	each	time	the	component	is	executed

− verbose:	optional	Boolean	value	specifying	whether	the	process	should	be	verbally	
recorded	(default	is	True)

− runIt:	Boolean	value	specifying	whether	to	run	this	component	(default	is	False)

Outputs:

33

− out:	verbal	description	of	the	flow	application	process,	if	the	verbose	input	parameter	
is	set	to	True

− Shape:	Shape	object	resulting	from	the	flow	(or	flow	structure)	application

− T:	translation	vector	to	allow	the	shape	to	be	drawn	next	to	the	original	shape,	along	

the	X-axis

SGI Apply All Flow

The	SGI Apply All Flow	component	determines	all	outcomes	(as	can	be	determined	through	
backtracking)	from	the	application	of	a	flow	onto	a	shape.

For	each	rule	in	the	flow,	if	there	are	multiple	potential	rule	applications,	by	default	a	
random	selection	is	made,	although	this	behavior	can	be	overridden	by	setting	the	random	
parameter	input	to	False,	in	which	case	the	first	rule	application	is	always	selected.	The	latter	
ensures	the	same	result	each	time	the	flow	is	applied	to	the	same	shape.

Inputs:

− Flow:	Flow	object

− Shape:	Shape	object	to	apply	the	flow	to

− random:	optional	Boolean	value	indicating	whether	a	random	(True,	default)	or	fixed	

(False)	selection	is	made	from	among	the	applications	for	one	rule;	a	fixed	selection	
yields	the	same	result	each	time	the	component	is	executed

− verbose:	optional	Boolean	value	indicating	whether	the	process	should	be	verbally	
recorded	(default	is	True)

− runIt:	Boolean	value	specifying	whether	to	run	this	component	(default	is	False)

Outputs:

− out:	verbal	description	of	the	flow	application	process,	if	the	verbose	input	parameter	
is	set	to	True

− Shapes:	list	of	Shape	objects	corresponding	to	the	number	of	flow	applications	found

− n:	number	of	matches	found,	corresponds	to	the	length	of	the	lists	Shapes	and	T

− T:	list	of	translation	vectors	to	allow	the	shapes	to	be	drawn	one	above	the	other,	

along	the	Y-axis,	and	next	to	the	original	shape,	along	the	X-axis

34

11. Specifying shape descriptions

We	use	the	term	shape	description	to	distinguish	it	from	a	rule	description.	The	latter	is	a	
textual	description	that	is	used	to	explain	the	purpose	of	a	rule	to	the	user;	it	is	not	
interpreted	by	the	SortalGI	engine.	Shape	descriptions,	on	the	other	hand,	follow	a	strict	
format	that	allows	them	to	be	interpreted	and	matched	by	the	SortalGI	engine	(see	Appendix
A. A formal notation for shape descriptions	for	an	explication	of	the	format).

Parametric shape descriptions

Shape	descriptions	are	parametric	in	nature,	that	is,	when	adopted	as	the	left-hand-side	(lhs)	
of	a	(shape)	description	rule,	a	shape	description	may	contain	one	or	more	parameters	that	
can	be	matched	onto	parts	of	the	description	under	investigation.	When	adopted	as	the	
right-hand-side	(rhs)	of	a	(shape)	description	rule,	a	shape	description	may	also	contain	
parameter	references	although	the	parameters	should	have	already	been	specified	in	the	
corresponding	lhs,	such	that	the	value	of	the	parameter	reference	in	the	rhs	can	be	taken	
from	the	matching	of	the	lhs.	Obviously,	shape	descriptions	that	do	not	form	part	of	a	shape	
description	rule	should	not	contain	any	parameters	or	parameter	references,	otherwise	
matching	will	necessarily	fail.

Example	(‘description’	is	the	shape	description	type	and	‘a’	is	a	parameter):

description: 4.0

description: a

Shape description types

A	single	shape	or	rule	may	specify	more	than	one	description.	For	example,	one	shape	
description	may	be	used	to	constrain	rule	application	while	another	may	serve	to	count	the	
number	of	rule	applications	performed	on	the	shape.	In	order	to	be	able	to	correctly	match	
shape	descriptions	belonging	to	the	lhs	and	the	rhs	of	the	rule,	shape	descriptions	must	be	
typed,	that	is,	each	shape	Description	that	is	not	used	as	an	attribute	to	a	point	must	be	
preceded	by	its	Type	(type	and	description	are	separated	by	a	colon).		Shape	description	
types	must	be	prescribed	in	the	SGI Setup	component	(see	section 5. Starting on a SortalGI-
based parametric model).

Multiple	shape	descriptions	may	share	the	same	description	type.	These	can	be	collected	in	a	
single	line,	using	a	vertical	bar	to	separate	the	various	descriptions.

Examples:

min_width: 10

colors: “black” | “white”

SGI Description

The	SGI Description component	composes	one	or	more	shape	descriptions	from	a	number	
of	description	types	and	description	values.	If	a	single	type	is	input	with	a	list	of	values,	then	
the	values	are	all	assigned	to	the	same	type.	Otherwise,	each	type	is	assigned	a	single	value	
and	if	there	is	an	insufficient	number	of	values,	then	the	last	one	is	repeated.

Inputs:

− Type:	one	or	more	shape	description	Types

− D:	one	or	more	Descriptions	(or	parameters),	without	Type	specification

Outputs:

− Description:	Description	text	or	list	thereof,	including	the	Type specification

35

Description literals

Literal	values	in	descriptions	may	be	numbers,	double	quoted	strings	or	predefined	
keywords.	The	latter	include	e,	nil,	pi,	true	and	false.	e	and	nil	are	equivalent	and	represent	
an	‘empty’	entity.	Depending	on	the	context,	the	‘empty’	entity	may	be	interpreted	to	
denote	zero,	an	empty	string	or	an	empty	tuple.	The	literals	pi,	true	and	false	denote	the	
numbers	‘π’,	1	and	0,	respectively.

Examples:

status: true

list: e

SGI Description Literals

The	SGI Description Literals selector	allows	to	select	from	a	list	of	literals	for	shape	
descriptions.

Description tuples

While	shape	descriptions	are	specified	in	textual	form,	they	can	be	structured	as	nested	lists/
tuples.	Tuples	should	be	enclosed	using	either	parentheses,	angle	brackets	or	square	
brackets.	A	top-level	tuple	may	have	the	enclosing	brackets	omitted.	The	entities	within	a	
tuple	should	be	separated	using	either	commas	or	semicolons.	Again,	a	top-level	tuple	may	
have	the	separating	marks	omitted.

Examples:

segment: <(0, 0), (1, 0)>

cubes: (“l:”, 10, “c:”, (0, 0), “r:”, 0) (“l:”, 10, “c:”, (5, 5), “r:”, 45)

SGI Tuple Markings

The	SGI Description Markings selector	allows	to	select	from	a	list	of	Markings	for	description	
tuples.

SGI Description Tuple

The	SGI Description Tuple component	composes	a	description	tuple	from	a	list	of	values	and	
the	specified	markings	(or	none).

Inputs:

− Ds:	list	of	Descriptions	as	tuple	elements

− Marking:	tuple	Marking,	either	parentheses,	angle	brackets	or	square	brackets	to	

enclose	the	tuple,	and	commas	or	semicolons	as	separators	(either	‘(,)’,	‘<,>’,	‘[,]’,	‘(;)’,	
‘<;>’,	‘[;]’);	alternatively,	the	enclosing	marks	can	be	omitted	with	spaces	as	separators	
(‘’,	default)

Outputs:

− tupleD:	Description	tuple	as	text

Description parameters

A	description	parameter	is	a	variable	term	that	is	specified	by	an	identifier	(any	sequence	of	
letters,	digits	and/or	underscores	starting	either	with	a	letter	or	underscore)	and	embedded	

36

in	the	lhs	of	a	description	rule.	Under	rule	application,	the	parameter	will	be	matched	to	a	
literal	or	a	tuple.	If	the	parameter	forms	part	of	a	string	expression	(see	String expressions	
below),	this	literal	can	be	any	part	of	a	literal	string.	If	the	parameter	forms	part	of	a	tuple,	it	
matches	a	specific	element	of	the	tuple,	unless	it	is	signified	by	a	kleene	star	(‘*’)	or	a	kleene	
plus	(‘+’),	in	which	case	it	can	match	any	subsequence	of	elements	of	the	tuple,	respectively,	
including	or	excluding	an	empty	subsequence.	The	use	of	a	kleene	star	or	kleene	plus	
signifier	allows	for	the	matching	of	variable	length	tuples.

Examples:

fixed_length: <“Fixed”, var1> <var2, var3> var4

variable_length: (0, 0) (x1, y1) remainder*

Parameter conditionals

Any	description	parameter	may	be	specified	a	conditional	that	constrains	the	possible	values	
of	this	parameter.	The	conditional	must	follow	the	parameter	and	both	must	be	separated	
only	by	a	question	mark	(‘?’).	The	conditional	may	be	either	enumerative	or	equational,	or	
specify	a	range.	An	enumerative	conditional	explicates	a	finite	set	of	possible	values.	This	set	
must	contain	either	all	numbers	or	all	(double	quoted)	strings,	and	the	set	must	be	enclosed	
using	curly	brackets.	An	equational	conditional	specifies	a	numeric	equality	or	inequality	on	
the	parameter,	in	the	form	of	a	conditional	operator	(‘=’,	‘<>’,	‘<’,	‘<=’,	‘>’,	or	‘>=’)	and	
operand.	The	operand	must	be	either	a	number	or	a	numerical	expression	(see	Numerical
expressions	below)	operating	on	numbers,	parameters—previously	defined—,	functions	(see	
Functions below)	and/or	references	(see	References	below).	Neither	strictly	enumerative,	nor	
strictly	equational,	it	is	possible	to	specify	a	range	of	numeric	values	using	a	minimum	and	
maximum	value	enclosed	in	square	brackets.

Examples:

yard: value?{nil, “default”}

rooms: <nrooms?>2, rooms>

range: a?[0, 10]

SGI Conditional Operators

The	SGI Conditional Operators selector	allows	to	select	from	a	list	of	conditional	Ops	for	
shape	descriptions.

SGI Conditional Expression

The	SGI Conditional Expression component	composes	a	conditional	expression	as	a	
concatenation	of	a	parameter	or	function,	a	question	mark	(‘?’),	a	conditional	operator	(‘=’,	
‘<>’,	‘<’,	‘<=’,	‘>’,	or	‘>=’)	and	an	argument.	If	the	operator	is	specified	as	‘[]’,	the	operator	is	
omitted	and	the	argument,	which	must	be	a	pair	of	numeric	values,	enclosed	by	square	
brackets.	If	the	operator	is	specified	as	‘{}’,	the	operator	is	omitted	and	the	argument,	which	
must	be	a	list	of	all	numbers	or	all	(double	quoted)	strings,	enclosed	by	braces.

Inputs:

− D:	Description	part,	either	a	parameter	or	function

− Op:	conditional	Op	(‘=’,	‘<>’,	‘<’,	‘<=’,	‘>’,	‘>=’,	‘[]’,	‘{}’)

− value:	single	number	or	numerical	expression;	a	pair	of	numeric	values;	or	a	list	of	all	

numbers	or	all	(double	quoted)	strings

37

Outputs:

− conditionD:	conditional	Description	expression	as	text

Numerical expressions

A	numerical	expression	can	be	embedded	in	a	parameter	conditional	(in	the	lhs	of	a	
description	rule)	or	in	the	rhs	of	a	description	rule.	A	numerical	expression	can	operate	on	
literal	keywords,	numbers,	numerical	functions	(see	Functions	below),	parameters	and	
references	(see	References	below).	Numerical	expressions	may	include	the	operators	plus	
(‘+’),	minus	(‘–‘),	times	(‘*’),	divided-by	(‘/’),	modulo	(‘%’)	and	to-the-power-of	(‘^’),	with	the	
usual	operator	precedence	rules	applying	and	the	use	of	parentheses	to	override	these	rules	
where	necessary.	Other	operations	are	available	in	the	form	of	numerical	functions.

Example	(‘vol’,	‘radius’	and	‘length’	specify	parameter	references)	:

volume: vol – pi^2 * radius * (length / 2)^2 + 4 / 3 * pi * (length / 2)^3

String expressions

A	string	expression	in	the	lhs	of	a	description	rule	enables	the	identification	of	substrings	in	
the	matching	process.	Here,	a	string	expression	is	a	concatenation	of	literals	and	parameters	
(with	or	without	conditional).	A	parameter	can	match	any	substring,	conditioned	by	the	
literal	components	(and	the	conditional,	if	present).	A	concatenation	of	two	parameters,	
without	a	literal	separating	the	two	parameters,	would	not	be	possible,	unless	the	first	
parameter	has	an	enumerative	conditional.

A	string	expression	in	the	rhs	of	a	description	rule	can	include	literals,	parameter	references		
(see	References	below),	numerical	expressions	(enclosed	in	parentheses)	and	functions	
returning	either	numbers	or	strings	(see	Functions	below).	The	result	is	the	concatenation	of	
all	components	upon	their	evaluation	into	literal	numbers	or	strings.

Examples	(the	two	lines	below	may	form	the	lhs	and	rhs	of	the	same	description	rule):

be: be1 be20.“, ”.be21.“-rafter beam in front, ”.be22.“-rafter beam in back” “with ”.c?=(be21 +
be22).“ columns”

be: be1 be20.“, ”.be21.“-rafter beam abutting ”.be22 “with ”.(c + 1).“ columns”

Tuple expressions

Tuple	expressions	allow	one	to	append	or	prepend	an	entity	to	a	tuple,	join	two	tuples	or	
add	two	tuples.	The	operations	to	append,	prepend	and	join	all	take	the	same	format:	two	
operands	separated	by	a	space.	The	appropriate	interpretation	is	arrived	at	by	looking	at	the	
structure	of	the	two	operands.	If	the	entity	shares	a	similar	“structure”	with	the	first	element	
of	the	tuple,	e.g.,	both	are	numbers	or	both	are	a	tuple	of	similar	structure,	then	the	entity	
will	be	appended	or	prepended	to	the	tuple	depending	on	its	position	with	respect	to	the	
tuple.	If	both	operands	are	(nested)	tuples,	and	the	elements	of	both	tuples	have	the	same	
structure,	then	a	join	operation	will	be	assumed,	combining	the	elements	from	both	tuples	in	
a	new,	single	tuple.	If	no	structural	similarity	exists,	then	the	expression	will	instead	be	
interpreted	as	a	tuple	omitting	enclosing	brackets	and	separator.

Adding	two	tuples	adds	the	respective	entities:	if	both	entities	are	numbers	they	are	
summed;	if	both	entities	are	strings	they	must	be	identical;	if	both	entities	are	tuples	and	
have	the	same	structure,	then	addition	is	applied	recursively.

Examples	(the	latter	also	includes	a	function):

position: a + (1, 0)

38

positions: a last(a) + (0, 1)

SGI Numerical Operators

The	SGI Numerical Operators selector	allows	to	select	from	a	list	of	numerical	Ops	for	shape	
descriptions.

SGI Expression

The	SGI Expression component	composes	a	string	or	numeric	expression	from	a	list	of	
inputs,	using	the	string	concatenation	operator	(‘.’)	or	a	numerical	operator,	respectively.

Inputs:

− Ds:	list	of	values	to	be	concatenated	in	the	expression	(textual	or	numeric)

− Op:	(numerical)	Op;	default	is	‘.’	for	a	string	expression;	‘+’,	‘–‘,	‘*’,	‘/’,	‘%’,	‘^’	are	

accepted	for	a	numeric	expression

Outputs:

− expressionD:	Description	expression	as	text

Functions

Functions	allow	for	additional	operations	on	numbers,	texts/strings	and	tuples,	or	a	
combination	thereof.	A	function	returns	a	single	value	from	any	one	of	these	three	entity	
types.	Strictly	numerical	functions	include	sqrt,	sin,	cos	and	tan,	asin,	acos	and	atan,	taking	a	
single	number	as	argument	and	returning	a	number.	Functions	operating	on	texts/strings	
include	determining	the	length	of	a	string	and	determining	a	lef	and	right	substring,	with	the	
length	of	the	substring	specified	as	an	additional	argument	to	the	function.

Functions	operating	on	tuples	include	determining	the	length	of	a	tuple,	retrieving	the	first	or	
last	element	of	a	tuple,	or	any	element	(item)	by	its	index,	the	minimum	(min)	and	maximum	
(max)	value	inside	a	tuple,	retrieving	a	tuple	of	only	unique	elements,	a	tuple	of	pairs	
extracting	consecutive	elements	pairwise	from	the	operand	tuple,	a	tuple	of	pairs	(segments)	
such	that	the	ith	pair	is	made	up	of	the	ith	and	(i+1)th	elements	of	the	operand	tuple,	a	tuple	
of	tuples	identifying	loops	in	the	operand	tuple	and	a	tuple	of	tuples	representing	an	
adjacencies	matrix.	The	latter	function	takes	two	arguments,	a	tuple	of	‘enclosures’	and	a	
tuple	of	‘connecting’	elements.

Tuples	of	numbers	can	be	considered	as	vectors,	currently	only	vectors	of	length	two	or	three	
are	considered.	Functions	on	vectors	require	the	different	vectors	to	have	the	same	length.	
These	functions	include	determining	the	magnitude	(mag)	of	a	vector	or	the	distance	(also	
mag)	or	angle	between	two	vectors,	adding	(vectoradd)	or	subtracting	(vectorsubstract)	two	
vectors,	taking	the	dotproduct	or	crossproduct	of	two	vectors	or	scaling	a	vector	by	a	number	
(vectorscale).

Finally,	a	function	to	generate	a	random	number	takes	as	input	(a	tuple	of)	two	or	three	
numbers,	with	the	first	two	specifying	the	range	and	the	optional	third	one	the	step.	More	
information	on	functions	is	provided	in	Appendix B. Description functions.

Examples:

positions: a (random(0,10,1), 0)

SGI Numeric Functions

39

The	SGI Numeric Functions selector	allows	to	select	from	a	list	of	numeric	Functions	for	
shape	descriptions.

SGI Text Functions

The	SGI Text Functions selector	allows	to	select	from	a	list	of	text	Functions	for	shape	
descriptions.

SGI Tuple Functions

The	SGI Tuple Functions selector	allows	to	select	from	a	list	of	tuple	Functions	(omitting	
vector	functions)	for	shape	descriptions.

SGI Vector Functions

The	SGI Vector Functions selector	allows	to	select	from	a	list	of	vector	Functions	for	shape	
descriptions.

SGI Function Concat

The	SGI Function Concat component	returns	a	functional	description	expression	that	is	a	
concatenation	of	a	function	and,	within	parentheses,	its	arguments	(see	Appendix B.
Description functions).

Inputs:

− Function:	description	Function

− Ds:	one	or	more	Description	arguments	to	the	function,	each	argument	either	a	

number,	a	text,	a	description	or	a	tuple	of	these

Outputs:

− functionD:	functional	Description	expression	as	a	concatenation	of	the	function	and,	
within	parentheses,	its	arguments

References

We	distinguish	three	kinds	of	references.	Firstly,	parameter	references	are	variable	terms	in	
the	rhs	of	a	description	rule,	which	reference	variable	terms	(parameters)	in	the	lhs	of	the	
same	(or	another)	description	rule.	The	value	of	the	parameter	reference	in	the	rhs	is	the	
value	of	the	same	parameter	in	the	lhs	upon	the	matching	of	the	lhs.

Secondly,	a	description	reference	is	similar	to	a	parameter	reference	but	references	a	
variable	term	in	another	shape	description	(that	is	part	of	the	same	rule).	In	such	case,	the	
parameter	must	be	preceded	by	the	description	type	in	order	to	identify	the	appropriate	
description	and	parameter.	Alternatively,	rather	than	referencing	a	specific	parameter,	the	
entire	value	of	the	description	can	be	referenced	using	the	term	value.	The	same	applies	to	
descriptions	used	within	a	color	attribute	specification	within	a	shape	rule.

Finally,	a	shape	reference	similarly	references	data	from	the	shape	rule	component	of	the	
rule.	A	shape	reference	may	take	one	of	two	forms.	Firstly,	shape	elements	can	be	referenced	
by	the	element	type	(see Shape element types	below);	however,	referencing	a	unique	
element	will	only	work	if	there	is	only	one	element	of	the	specific	type,	otherwise	the	
reference	will	be	ambiguous.	Otherwise,	the	element	can	be	disambiguated	by	additionally	
specifying	its	attribute	label	(or	description),	provided	the	element	has	an	attribute	and	the	
attribute	label	is	unique	(see	example	below).	Secondly,	spatial	elements	can	be	tagged	in	
the	shape	rule.	Spatial	element	tags	can	be	understood	as	attributes	to	the	elements,	similar	

40

to	labels	(tags	are	recognized	by	the	‘#’	symbol	preceding	the	tag	identifier).	However,	
different	from	attributes,	tags	are	particular	to	the	rule	in	question	and	only	subsist	within	
the	rule	matching	and	application	process	of	this	rule.	As	such,	tags	are	not	considered	
attributes;	within	a	shape	description,	the	tag	solely	serves	to	identify	the	spatial	element	
the	description	is	referencing.

Example	querying	the	positions	of	two	points	with	given	labels:

constraint: a?>=mag(point3D.value:plabelD.value=”1”, point3D.value:plabelD.value =”2”)

constraint: a?>=mag(#pt1.value, #pt2.value)

SGI Type Properties

The	SGI Type Properties component	retrieves	the	list	of	property	names	for	a	spatial	type	
(see	Shape element types and their available properties	below),	and	returns	each	name	
concatenated	to	the	appropriate	element	type	or,	if	specified,	an	element	tag.	This	
combination	can	be	used	in	a	description	rule	to	retrieve	the	property	value.	The	element	
type	is	dependent	on	the	spatial	type	and	whether	it	applies	to	a	non-parametric	(default)	or	
parametric-associative	rule.	It	can	be	additionally	specified	to	apply	to	an	element	from	the	
left-hand-side	(default)	or	right-hand-side	of	the	rule.

Inputs:

− spatialType:	spatialType	(‘point’,	‘line	segment’,	‘plane	segment’,	‘circle’,	‘ellipse’,	
‘circular	arc’	or	’quadratic	Bezier’)

− for_pRule:	Boolean	value	specifying	whether	the	element	type	refers	to	a	parametric-
associative	(True)	or	non-parametric	rule	(False,	default)

− of_rhShape:	Boolean	value	specifying	whether	the	element	will	be	part	of	the	right-
hand-side	(True)	or	left-hand-side	(False,	default)	of	the	rule

− Tag:	optional	element	Tag

Outputs:

− propertyDs:	list	of	shape	properties	as	Descriptions,	in	the	form	of	concatenations	of	
element	Tag/Type	and	property	names	for	a	spatialType

SGI Description Reference

The	SGI Description Reference component	returns	a	description	reference	expression	that	is	
a	concatenation	of	a	shape	(attribute)	description	type	(or	attribute	type,	e.g.,	‘color’)	and	
the	specified	parameter	or,	otherwise,	the	term	‘value’.	The	resulting	expression	references	
the	parameter	(if	specified)	or	value	of	a	shape	description	or	shape	(or	color)	attribute	
description.

Inputs:

− sType:	either	a	description	Type	or	spatialType	(‘point’,	‘line	segment’,	‘plane	
segment’,	‘circle’,	‘ellipse’,	‘circular	arc’	or	’quadratic	Bezier’)

− atttype:	optional	atttype	(‘labelD’	or	‘color’)

− parameter:	optional	parameter

Outputs:

− referenceD:	Description	expression	referencing	the	parameter	(if	specified)	or	value	

of	a	shape	description	or	shape	(or	color)	attribute	description

41

SGI Conditional Reference

The	SGI Conditional Reference component	composes	a	conditional	reference	as	a	
concatenation	of	a	(main)	description	reference	or	shape	property,	a	colon	(‘:’),	a	(auxiliary)	
description	reference	or	shape	property,	a	conditional	operator	(‘=’,	‘<>’,	‘<’,	‘<=’,	‘>’,	or	‘>=’)	
and	an	argument.	The	argument	should	either	be	a	number,	a	vector	or	a	string.	The	
resulting	expression	constrains	the	main	reference	or	property	by	its	relation	to	the	auxiliary	
shape	(attribute)	description	or	spatial	type	and	the	condition	on	the	(parameter)	value	of	
this	auxiliary	reference.	For	example,	in	the	case	of	multiple	line	segments,	the	property	
value	of	a	specific	line	segment	can	be	identified	based	on	the	value	of	its	shape	attribute	
description	by	specifying	a	condition	on	the	shape	attribute	description.

Inputs:

− referenceD:	main	Description	reference	or	shape	property

− auxRefD:	auxiliary	Description	reference	or	shape	property

− Op:	conditional	Op	(‘=’,	‘<>’,	‘<’,	‘<=’,	‘>’,	or	‘>=’,	‘[]’,	‘{}’)

− value:	numeric,	vector	or	quoted	string	value

Outputs:

− conditionD:	conditional	Description	reference

Shape element types and their available properties

Every	spatial	type,	except	for	circular	arcs,	is	identified	by	two	names.	The	first	one	should	be	
used	within	non-parametric	rules	and	the	second	within	parametric-associative	rules	(pRule).	
Note	that	circular	arcs	are	not	yet	available	within	parametric-associative	rules	and,	if	
specified,	will	be	ignored.

type name property output value

points point3D value vector	tuple* position

pointP3D

line	segments lineSeg3D root

direction

unitDir

start

end

midpoint

length

squareLength

oDirection

oStart

oEnd

vector	tuple*

vector	tuple*

vector	tuple*

vector	tuple*

vector	tuple*

vector	tuple*

number

number

vector	tuple*

vector	tuple*

vector	tuple*

root	point	(nearest	point	
to	the	origin)

direction	vector

unit	direction	vector

start	point

endpoint

midpoint

line	length

square	value	of	line	
length

original	direction	vector†

original	start	point†

original	endpoint†

lineSegP3D

plane	segments planeSeg3D normal

area

vector	tuple*

number

normal	vector

plane	area

42

planesegP3D
area

outer

number

tuple	of	vector	
tuples*

plane	area

list	of	outer	boundary	
vertices

circles circle3D normal

center

radius

diameter

circumference

area

vector	tuple*

vector	tuple*

number

number

number

number

plane	normal	vector

center	point

radius

diameter

circumference

area	of	the	circle

circleP3D

ellipses ellipse3D normal

center

foci

radii

area

vector	tuple*

vector	tuple*

tuple	of	vector	
tuples*

tuple	of	numbers

number

plane	normal	vector

center	point

list	of	focal	points

list	of	longer	and	shorter	
radii

area	of	the	ellipse

ellipseP3D

circular	arcs arc3D normal

center

radius

diameter

circumference

start

end

length

angle

area

vector	tuple*

vector	tuple*

number

number

number

vector	tuple*

vector	tuple*

number

number

number

plane	normal	vector

circle	center	point

circle	radius

circle	diameter

circle	circumference

endpoint	(ccw)

endpoint	(cw)

arc	length

angle	covered	by	the	arc	
(in	radians)

area	covered	by	the	arc

quadratic	Bezier	
curves

bezier3D normal

start

controlPoint

end

vertex

vector	tuple*

vector	tuple*

vector	tuple*

vector	tuple*

vector	tuple*

plane	normal	vector

1st	control	point

2nd	control	point

3rd	control	point

maximum	or	minimum	of	
the	curve

bezierP3D

labels/	
descriptions	as	
spatial	element	
attribute

for	points,	 
line	segments,	
plane	segments,	
circles,	ellipses,	
circular	arcs	and	
quadratic	Bezier	
curves,	
respectively

pLabelD value string label	or	description	string

lLabelD

plLabelD

cLabelD

eLabelD

aLabelD

bLabelD

43

*A	vector	tuple	is	a	tuple	of	two	or	three	numbers.

†The	direction	vector	of	a	line	segment	is	a	normalized	vector:	it	has	a	positive	X-coordinate	(or	a	
positive	Y-coordinate	if	the	X-coordinate	is	0;	or	a	positive	Z-coordinate	if	both	the	X	and	Y-
coordinates	are	0).	The	start	and	end	points	of	a	line	segment	are	the	respective	endpoints	of	the	line	
segment	with	the	normalized	direction	vector.	The	original	direction	vector,	and	original	start	and	end	
points,	reflect	the	situation	before	normalization,	that	is,	how	the	line	segment	was	created.	Note	
that	the	original	direction	vector	loses	its	meaning	when	line	segments	are	operated	upon	(e.g.,	
combined	with	another	line	segment).

colors	as	spatial	
element	
attribute

for	line	
segments,	plane	
segments,	
circles,	ellipses,	
circular	arcs	and	
quadratic	Bezier	
curves,	
respectively

lColor depending	on	
colorMode:

if	‘graytone’:

 value

else:

 value

 RGB

depending	on	
colorMode:

if	‘graytone’:

				number

else:

				tuple	of	integers

				string

depending	on	colorMode:

if	‘graytone’:

				between	0	(white)	and 
				255	(black)

else:

				R,	G,	B	and	alpha	
values

				hexadecimal	string	in	 
				format	‘0xRRGGBB’

plColor

cColor

eColor

aColor

bColor

44

12. Specifying predicates

A	predicate	serves	to	express	a	special	condition	on	the	application	of	a	rule.	Such	condition	
cannot	simply	be	explicated	within	the	left-hand-side	shape.	As	an	example,	a	predicate	may	
specify	that	a	polygonal	area	must	be	devoid	of	any	spatial	elements.	Most	predicates	are	
only	applicable	to	parametric-associative	rules,	however,	a	few	predicates	are	also	applicable	
to	non-parametric	rules.	These	are,	specifically,	the	void,	inside	and	outside	predicates.

SGI Void Predicate

The	SGI Void Predicate component	creates	a	void	predicate	from	one	or	more	polygonal	
geometries	and,	optional,	spatial	types,	and	an	optional	reference	point.	It	is	applicable	to	
both	non-parametric	and	parametric-associative	rules.	The	void	predicate	stipulates	that	a	
given	polygonal	area	is	to	contain	no	spatial	elements	(points,	line	segments,	plane	
segments)	at	all	or	of	the	specified	type;	spatial	elements	may	coincide	with	the	boundary.	It	
must	be	noted	that	while	the	predicate	explicates	the	vertices	by	their	coordinates,	in	the	
case	of	a	parametric-associative	rule,	they	must	necessarily	coincide	with	any	of	the	line	
segments	in	the	lhs	shape	in	order	for	the	vertices	to	be	recognized	via	the	parametric-
associative	matching	mechanism.

If	the	numbers	of	inputs	are	the	same,	it	is	assumed	they	correspond;	otherwise,	all	spatial	
types	specified	are	considered	for	each	geometry,	unless	they	come	in	the	form	of	a	list	of	
lists.	In	the	latter	case,	surplus	spatial	type	inputs	are	ignored.

Inputs:

− Polygon:	polygonal	geometry	(one	or	more);	may	be	expressed	as	points,	line	
segments,	closed	polyline,	flat	surface	or	boundary	representation

− spatialType:	optional	list	of	spatialTypes	(‘point’,	‘line	segment’,	‘plane	segment’,	
‘circle’,	‘ellipse’,	‘circular	arc’	or	’quadratic	Bezier’)

− for_pRule:	optional	Boolean	value	specifying	whether	the	element	type(s)	refers	to	a	
parametric-associative	(True)	or	non-parametric	rule	(False,	default);	only	considered	
if	a	spatialType	is	specified

− refP:	optional	reference	point;	if	specified,	the	geometry	will	be	considered	moved	
from	the	reference	point	to	the	origin	(assuming	the	same	reference	point	is	used	to	
similarly	move	the	left-hand-side	shape	of	the	rule)

Outputs:

− Predicate:	Predicate	text

SGI Inside Predicate

The	SGI Inside Predicate component	creates	an	inside	predicate	from	one	or	more	polygonal	
geometries	and,	optional,	spatial	types.	It	is	applicable	to	both	non-parametric	and	
parametric-associative	rules.	The	inside	predicate	stipulates	that	all	spatial	elements	(points,	
line	segments,	plane	segments)	of	the	specified	type	(if	specified)	matching	(part	of)	the	lhs	
shape	are	to	be	entirely	contained	within	the	given	polygonal	area;	although,	spatial	
elements	may	touch	or	coincide	with	the	boundary.	It	must	be	noted	that,	unlike	the	void	
predicate,	the	coordinates	of	the	vertices	are	taken	at	absolute	value	and	not	affected	by	any	
transformation	as	resulting	from	the	matching.

45

If	the	numbers	of	inputs	are	the	same,	it	is	assumed	they	correspond;	otherwise,	all	spatial	
types	specified	are	considered	for	each	geometry,	unless	they	come	in	the	form	of	a	list	of	
lists.	In	the	latter	case,	surplus	spatial	type	inputs	are	ignored

Inputs:

− Polygon:	polygonal	geometry;	may	be	expressed	as	points,	line	segments,	closed	
polyline,	flat	surface	or	boundary	representation

− spatialType:	optional	list	of	spatialTypes	(‘point’,	‘line	segment’,	‘plane	segment’,	
‘circle’,	‘ellipse’,	‘circular	arc’	or	’quadratic	Bezier’)

− for_pRule:	optional	Boolean	value	specifying	whether	the	element	type	refers	to	a	
parametric-associative	(True)	or	non-parametric	rule	(False,	default);	only	considered	
if	a	spatialType	is	specified

Outputs:

− Predicate:	Predicate	text

SGI Outside Predicate

The	SGI Outside Predicate component	creates	an	outside	predicate	from	one	or	more	
polygonal	geometries	and,	optional,	spatial	types.	It	is	applicable	to	both	non-parametric	and	
parametric-associative	rules.	The	outside	predicate	stipulates	that	all	spatial	elements	
(points,	line	segments,	plane	segments)	of	the	specified	type	(if	specified)	matching	(part	of)	
the	lhs	shape	are	to	be	entirely	outside	of	the	given	polygonal	area;	although,	spatial	
elements	may	touch	or	coincide	with	the	boundary.	It	must	be	noted	that,	unlike	the	void	
predicate,	the	coordinates	of	the	vertices	are	taken	at	absolute	value	and	not	affected	by	any	
transformation	as	resulting	from	the	matching.

If	the	numbers	of	inputs	are	the	same,	it	is	assumed	they	correspond;	otherwise,	all	spatial	
types	specified	are	considered	for	each	geometry,	unless	they	come	in	the	form	of	a	list	of	
lists.	In	the	latter	case,	surplus	spatial	type	inputs	are	ignored

Inputs:

− Polygon:	polygonal	geometry;	may	be	expressed	as	points,	line	segments,	closed	
polyline,	flat	surface	or	boundary	representation

− spatialType:	optional	list	of	spatialTypes	(‘point’,	‘line	segment’,	‘plane	segment’,	
‘circle’,	‘ellipse’,	‘circular	arc’	or	’quadratic	Bezier’)

− for_pRule:	optional	Boolean	value	specifying	whether	the	element	type	refers	to	a	
parametric-associative	(True)	or	non-parametric	rule	(False,	default);	only	considered	
if	a	spatialType	is	specified

Outputs:

− Predicate:	Predicate	text

SGI Maxline Predicate

The	SGI Maxline Predicate component	creates	a	maxline	predicate	from	one	or	more	line	
element	tags.	It	is	only	applicable	to	parametric-associative	rules.	The	maxline	predicate	
stipulates	that	any	line	segment	matching	the	tagged	line	segment	must	use	its	full	extent	to	
match	the	line	segment.

Inputs:

− lineTag:	one	or	more	element	Tags	of	line	segments

Outputs:

− Predicate:	Predicate	text

46

SGI Bound Predicate

The	SGI Bound Predicate component	creates	a	bound	predicate	from	one	or	more	line	
element	tags	and	Boolean	values	specifying	whether	the	respective	endpoint	of	the	line	
element	must	be	a	boundary	point	or	not.	It	is	only	applicable	to	parametric-associative	
rules.	The	bound	predicate	stipulates	a	matching	line	to	be	bound	at	an	indicated	endpoint.	
It	is	similar	to	maxline	but	is	able	to	limit	the	line	from	a	specific	endpoint.

Any	surplus	Boolean	values	are	ignored,	any	missing	values	are	considered	false;	unless	only	
a	single	value	is	specified,	in	which	case	it	is	copied.	Note	that	the	endpoints	of	the	tagged	
line	segment	will	initially	be	ordered	as	identified	when	constructing	the	line	segment,	but	
this	may	change	upon	manipulating	the	segment	(e.g.,	through	rule	application),	after	which	
the	endpoints	would	be	ordered	corresponding	their	coordinates	(first	X,	then	Y	and	finally	
Z).

Inputs:

− lineTag:	one	or	more	element	Tags	of	line	segments

− atStart:	one	or	more	Boolean	values	specifying	whether	the	startpoint	of	the	

(respective)	line	segments	must	be	a	boundary	point	or	not

− atEnd:	one	or	more	Boolean	values	specifying	whether	the	endpoint	of	the	

(respective)	line	segments	must	be	a	boundary	point	or	not

Outputs:

− Predicate:	Predicate	text

SGI Shortest-Line Predicate

The	SGI Shortest-Line Predicate component	creates	a	shortest	line	predicate	from	one	or	
more	line	element	tags.	It	is	only	applicable	to	parametric-associative	rules.	The	shortest	line	
predicate	stipulates	that	the	line	segment	matching	the	tagged	line	must	be	the	shortest	line	
in	the	matching	shape.	In	the	case	of	multiple	inputs,	the	matched	lines	identified	as	the	
shortest	lines	must	all	have	the	same	length.

Inputs:

− lineTag:	one	or	more	element	Tags	of	line	segments

Outputs:

− Predicate:	Predicate	text

SGI Longest-Line Predicate

The	SGI Longest-Line Predicate component	creates	a	longest	line	predicate	from	one	or	
more	line	element	tags.	It	is	only	applicable	to	parametric-associative	rules.	The	longest	line	
predicate	stipulates	that	the	line	segment	matching	the	tagged	line	must	be	the	longest	line	
in	the	matching	shape.	In	the	case	of	multiple	inputs,	the	matched	lines	identified	as	the	
longest	lines	must	all	have	the	same	length.

Inputs:

− lineTag:	one	or	more	element	Tags	of	line	segments

Outputs:

− Predicate:	Predicate	text

47

SGI Description Predicate

The	SGI Description Predicate component	creates	a	description	predicate	from	one	or	more	
conditional	description	expressions	(see	section 11. Specifying shape descriptions).	As	the	
conditional	expression	may	reference	one	or	more	spatial	element	properties,	the	
description	predicate	may	stipulate	a	constraint	over	such	properties.	The	description	
predicate	is	only	applicable	to	parametric-associative	rules.

Inputs:

− conditionD:	one	or	more	conditional	expression	Descriptions

Outputs:

− Predicate:	Predicate	text

48

13. Specifying directives

Directives	are	value	specifications	for	applying	a	parametric-associative	rule	that	cannot	be	
derived	from	or	expressed	within	the	right-hand-side	shape	of	the	rule.	As	an	example,	a	
directive	may	specify	the	distance	from	a	new	line	added	in	the	rhs	to	an	existing	point.	
Directives	are	only	applicable	to	parametric-associative	rules.

SGI Point-on-Line Directive

The	SGI Point-on-Line Directive component	creates	a	point	on	line	directive	from	one	or	
more	target	and	line	element	tags	and	parameter	values.	Any	discrepancy	between	the	
numbers	of	inputs	is	resolved	by	copying	the	respective	last	value.

The	point	on	line	directive	specifies	the	parameter	value	for	the	position	of	a	new	point	on	
an	existing	line	segment,	with	respect	to	the	endpoints	of	the	line	with	respective	parameter	
values	0	and	1.	The	new	point	may	serve	as	the	endpoint	of	a	new	(target)	line	segment.

The	parameter	value	can	be	explicated	as	a	numeric	value	between	0	and	1	or	as	a	
description	enclosed	within	backward	quotes.	For	example,	the	description	`random((0.3,	
0.7))`	prescribes	a	random	value	between	0.3	and	0.7.

Inputs:

− Tag:	one	or	more	element	Tags	of	line	segments	or	points	(rhs	shape)

− lineTag:	one	or	more	element	Tags	of	line	segments	(lhs	(or	rhs)	shape)

− valueD:	one	or	more	parameter	values,	each	either	a	numeric	value	or	a	Description	

(enclosed	within	backward	quotes)

Outputs:

− Directive:	Directive	text

SGI Distance Directive

The	SGI Distance Directive component	creates	a	distance	directive	from	one	or	more	target	
and	reference	element	tags	and	distance	values,	and	an	optional	direction	vector.	Any	
discrepancy	between	the	numbers	of	inputs	is	resolved	by	copying	the	respective	last	value.

The	distance	directive	specifies	the	distance	from	a	new	spatial	element	(line	or	point)	to	an	
existing	spatial	element	(line	or	point).	There	are	4	possible	cases:

− Line-line	distance:	the	new	line	must	be	parallel	to	the	existing	line;	a	direction	vector	
can	be	additionally	specified	to	indicate	the	direction	in	which	the	line	is	added.	The	
direction	vector	can	be	explicated	as	a	coordinate	tuple	or	as	a	description	enclosed	
within	backward	quotes.	For	example,	the	description	`#plane.normal`	prescribes	the	
normal	vector	of	a	tagged	plane	as	the	direction	vector.

− Line-point	distance:	the	new	line	must	run	through	an	existing	point,	line	endpoint	or	
line	intersection	point;	the	distance	is	measured	perpendicular	from	the	line	to	the	
point

− Point-line	distance:	the	new	point	must	be	on	another	existing	line	not	parallel	to	the	
reference	line;	the	distance	is	measured	perpendicular	from	the	line	to	the	point

− Point-point	distance:	the	new	point	must	be	on	an	existing	line;	the	distance	is	
measured	between	both	points

Inputs:

− Tag:	one	or	more	element	Tags	of	target	points	or	line	segments	(rhs	shape)

49

− refTag:	one	or	more	element	Tags	of	reference	points	or	line	segments	(lhs	or	rhs	
shape)

− distanceD:	one	or	more	distance	values,	each	either	a	numeric	value	or	a	Description	
(enclosed	within	backward	quotes)

− directionD:	optional,	one	or	more	direction	vectors,	each	either	a	vector,	a	coordinate	
tuple	or	a	Description	(enclosed	within	backward	quotes)

Outputs:

− Directive:	Directive	text

SGI Direction Directive

The	SGI Direction Directive component	creates	a	direction	directive	from	one	or	more	line	
element	tags	and	direction	vectors.	Any	discrepancy	between	the	numbers	of	inputs	is	
resolved	by	copying	the	respective	last	value.

The	direction	directive	specifies	the	direction	vector	of	a	new	line	element.	The	direction	
vector	can	be	explicated	as	a	coordinate	tuple	or	as	a	description	enclosed	within	backward	
quotes.	For	example,	the	description	`#plane.normal`	prescribes	the	normal	vector	of	a	
tagged	plane	as	the	direction	vector.

Inputs:

− Tag:	one	or	more	element	Tags	of	line	segments	(rhs	shape)

− directionD:	one	or	more	direction	vectors,	each	either	a	coordinate	tuple	or	a	

Description	(enclosed	within	backward	quotes)

Outputs:

− Directive:	Directive	text

SGI Length Directive

The	SGI Length Directive component	creates	a	length	directive	from	one	or	more	line	
element	tags	and	length	values.	Any	discrepancy	between	the	numbers	of	inputs	is	resolved	
by	copying	the	respective	last	value.

The	length	directive	specifies	the	length	of	a	new	line	segment.

Inputs:

− Tag:	one	or	more	element	Tags	of	line	segments	(rhs	shape)

− lengthD:	one	or	more	length	values,	each	either	a	numeric	value	or	a	Description	

(enclosed	within	backward	quotes)

Outputs:

− Directive:	Directive	text

SGI Angle Directive

The	SGI Angle Directive component	creates	an	angle	directive	text	from	one	or	more	target	
and	reference	element	tags	and	angle	values.	Any	discrepancy	between	the	numbers	of	
inputs	is	resolved	by	copying	the	respective	last	value.

The	angle	directive	specifies	the	angle	(in	radians)	between	a	new	spatial	line	element	and	
an	existing	spatial	line	element.

Inputs:

− Tag:	one	or	more	element	Tags	of	target	line	segments	(rhs	shape)

50

− refTag:	one	or	more	element	Tags	of	reference	line	segments	(lhs	or	rhs	shape)

− angleD:	one	or	more	angle	values	(expressed	in	radians),	each	either	a	numeric	value	

or	a	Description	(enclosed	within	backward	quotes)

Outputs:

− Directive:	Directive	text

51

Appendix A. A formal notation for shape descriptions

The	table	below	presents	a	formal	notation	for	shape	descriptions	and	the	left-hand-side	
(lhs)	and	right-hand-side	(rhs)	of	shape	description	rules	in	Extended	Backus-Naur-Form	
(EBNF),	including	examples.	The	same	non-terminals	serve	to	define	the	production	rules	for	
a	description,	an	lhs	and	an	rhs.	Only	when	necessary	are	alternative	production	rules	
defined	for	the	same	non-terminal;	these	are	then	identified	by	adding	the	terms	
description,	lhs	and	rhs,	respectively,	enclosed	within	angle	brackets	(‘<...>’),	as	a	prefix	to	
the	respective	production	rule.

typed-description	=	type-name	‘:’	description	.

type-name	=	identifier	.

description	=	description-entity	|	description-sequence	. 
description-entity	=	literal	|	top-level-tuple	. 
description-sequence	=	‘&’	description-entity	‘&’	{	description-entity	‘&’	}	.

literal	=	keyword-literal	|	number	|	string	. 
keyword-literal	=	‘e’	|	‘nil’	|	‘pi’	|	‘true’	|	‘false’. 
number	=	[‘–’]	digit-sequence	[‘.’	digit-sequence]	. 
digit-sequence	=	digit	{	digit	}	. 
digit	=	‘0’	|	‘1’	|	‘2’	|	‘3’	|	‘4’	|	‘5’	|	‘6’	|	‘7’	|	‘8’	|	‘9’	. 
string	=	‘“’	{	string-character	}	‘”’	. 
string-character	=	any-character-except-quote	|	‘\’	‘“’	.

Example	description-entity: 
“centrally divided, double 1-rafter beam in front and back”

Example	description-sequence: 
&e&0&“nothing”&

top-level-tuple	=	tuple	|	unmarked-tuple	. 
tuple	=	‘(’	tuple-entities	‘)’	|	‘<’	[tuple-entities]	‘>’	|	‘[’	[tuple-entities]	‘]’	. 
<description>tuple-entities	=	tuple-entity-sequence	. 
<lhs>tuple-entities	=	tuple-entity-sequence	|	tuple-expression	. 
<rhs>tuple-entities	=	tuple-entity-sequence	|	tuple-expression	. 
tuple-entity-sequence	=	tuple-entity	({	‘,’	tuple-entity	}	|	{	‘;’	tuple-entity	})	. 
<description>tuple-entity	=	literal	|	tuple	. 
<lhs>tuple-entity	=	numeric-expression	|	string-expression	|	tuple	. 
<rhs>tuple-entity	=	numeric-expression	|	string-expression	|	tuple	|	function-returns-tuple	. 
unmarked-tuple	=	tuple-expression	|	tuple	(tuple	|	keyword-literal)	{	tuple-entity	}	.

Example	tuple: 
(“l:”, 10, “c:”, (0, 0), “r:”, 0)

Example	unmarked-tuple: 
<" ", "O", "R0", "R1"> <"O", 1, 1, 1> <"R0", 1, 1, 0> <"R1", 1, 0, 1>

description-rule-side	=	description-rule-entity	|	description-rule-sequence	. 
<lhs>description-rule-entity	=	literal	|	parameter	[‘?’	conditional]	|	string-expression	|	top-level-
tuple	. 
<rhs>description-rule-entity	=	numeric-expression	|	string-expression	|	function-returns-tuple	|	
tuple-expression	. 
description-rule-sequence	=	‘&’	description-rule-entity	‘&’	{	description-rule-entity	‘&’	}	.

52

parameter	=	identifier	.	 
identifier	=	(letter	|	underscore)	{	(letter	|	underscore	|	digit)	}	. 
letter	=	‘A’	|	‘B’	|	‘C’	|	‘D’	|	‘E’	|	‘F’	|	‘G’	|	‘H’	|	‘I’	|	‘J’	|	‘K’	|	‘L’	|	‘M’	|	‘N’	|	‘O’	|	‘P’	|	‘Q’	|	‘R’	|	‘S’	|	
‘T’	|	‘U’	|	‘V’	|	‘W’	|	‘X’	|	‘Y’	|	‘Z’	|	‘a’	|	‘b’	|	‘c’	|	‘d’	|	‘e’	|	‘f’	|	‘g’	|	‘h’	|	‘i’	|	‘j’	|	‘k’	|	‘l’	|	‘m’	|	‘n’	|	
‘o’	|	‘p’	|	‘q’	|	‘r’	|	‘s’	|	‘t’	|	‘u’	|	‘v’	|	‘w’	|	‘x’	|	‘y’	|	‘z’	. 
underscore	=	‘_’	.

Example	<lhs>description-rule-entity: 
<“Fixed”, var1> <var2, var3> remainder

Example	description-rule-sequence: 
&a1&a2&a3&a4&a5&a6&a7&a8&

conditional	=	enumeration	|	equation	|	range. 
enumeration	=	‘{’	(number-sequence	|	string-sequence)	‘}’	. 
number-sequence	=	number	{	‘,’	number	}	. 
string-sequence	=	string	{	‘,’	string	}	. 
equation	=	comparator	comparand	. 
comparator	=	‘=’	|	‘<>’	|	‘<’	|	‘<=’	|	‘>’	|	‘>=’	. 
comparand	=	number	|	‘(’	numeric-expression	‘)’	|	parameter	|	reference	.

range	=	‘[‘	number	‘,’	number	‘]’	.

Example	<lhs>description-rule-entity	with	enumeration: 
yard?{nil, “default”}

Example	<lhs>description-rule-entity	with	equation: 
<nrooms?>2, rooms>

numeric-expression	=	term	{	addition-operator	term	}	. 
term	=	factor	{	multiplication-operator	factor	}	. 
factor	=	base	{	exponentiation-operator	exponent	}	. 
exponent	=	base	. 
base	=	keyword-literal	|	number	|	‘(’	numeric-expression	‘)’	|	function-returns-number	|	parameter	
|	reference	. 
exponentiation-operator	=	‘^’	. 
multiplication-operator	=	‘*’	|	‘/’	|	‘%’	. 
addition-operator	=	‘+’	|	‘–’	.

Example	numeric-expression: 
vol – pi^2 * radius * (length / 2)^2 + 4 / 3 * pi * (length / 2)^3

string-expression	=	string-expression-entity	{	‘.’	string-expression-entity	}	. 
<lhs>string-expression-entity	=	literal	|	parameter	[‘?’	conditional]	. 
<rhs>string-expression-entity	=	base	|	string	|	function-returns-string	.

Example	<rhs>string-expression: 
“with ”.(c + 1).“ columns”

Example	<lhs>string-expression: 
“with ”.c?=(be21 + be22).“ columns”

53

<lhs>tuple-expression	=	tuple-append	|	tuple-prepend	. 
<rhs>tuple-expression	=	tuple-addition	|	tuple-extension	.	 
tuple-append	=	{	tuple-entity	}	parameter	(‘*’	|	‘+’)	tuple-entity	{	tuple-entity	}	[tuple-
expression]	. 
tuple-prepend	=	[tuple-expression]	{	tuple-entity	}	tuple-entity	parameter	(‘*’	|	‘+’)	{	tuple-
entity	}	. 
tuple-addition	=	[parameter]	‘+’	basic-tuple-argument	.	 
tuple-extension	=	{	tuple-entity	}	parameter	{	tuple-entity	}	[tuple-expression]	.

Example	tuple-prepend: 
h1 h2 H*

Example	tuple-extension: 
a1 last(a1) + (0, 1)

Example	tuple-addition: 
bedrooms + <1, [(“couple”, 0), (“double”, 0), (“single”, 1)]>

54

function	=	function-returns-number	|	function-returns-string	|	function-returns-tuple	. 
function-returns-number	=	numeric-function	|	length-function	|	string-function-untyped	|	tuple-
function-untyped	|	vector-function	|	round-function	|	random-function	. 
numeric-function	=	(‘sqrt’	|	‘sin’	|	‘cos’	|	‘tan’	|	‘asin’	|	‘acos’	|	‘atan’)	‘(’	numeric-expression	‘)’	|	
‘atan2’	‘(’	numeric-expression	‘,’	numeric-expression	‘)’	. 
length-function	=	‘length’	‘(’	(string-argument	|	tuple-argument)	‘)’	. 
<lhs>string-argument	=	string	|	function-returns-string	|	parameter	|	reference	. 
<rhs>string-argument	=	string-expression	. 
function-returns-string	=	string-function-returns-string	|	string-function-untyped	|	tuple-function-
untyped	. 
string-function-returns-string	=	(‘left’	|	‘right’)	‘(’	string-argument	‘,’	numeric-expression	‘)’	. 
string-function-untyped	=	‘eval’	‘(’	string-argument	‘)’	. 
tuple-function-untyped	=	(‘first’	|	‘last’	|	‘min’	|	‘max’)	‘(’	tuple-argument	‘)’	|	(‘item’)	‘(‘	tuple-
argument	‘,’	numeric-expression	‘)’	. 
<lhs>tuple-argument	=	basic-tuple-argument	. 
<rhs>tuple-argument	=	basic-tuple-argument	|	tuple-expression	. 
basic-tuple-argument	=	tuple	|	function-returns-tuple	|	parameter	|	reference	. 
function-returns-tuple	=	tuple-function-returns-tuple	|	function-returns-vector	|	string-function-
untyped	|	tuple-function-untyped	. 
tuple-function-returns-tuple	=	(‘unique’	|	‘segments’	|	‘pairwise’	|	‘loops’)	‘(’	tuple-argument	‘)’	|	
‘adjacencies’	‘(’	tuple-argument	‘,’	tuple-argument	‘)’	. 
function-returns-vector	=	two-vector-function	|	proj-vector-function	|	scale-vector-function	|	
round-function	. 
two-vector-function	=	(‘vectoradd’	|	‘vectorsubtract’	|	‘dotproduct’	|	‘crossproduct’)	‘(’	(vector-
argument	‘,’	vector-argument	|	two-vector-argument)	‘)’	. 
vector-argument	=	‘(‘	numeric-expression	‘,’	numeric-expression	[‘,’	numeric-expression]	‘)’	|	
function-returns-vector	|	parameter	|	reference	. 
two-vector-argument	=	‘(‘	vector-argument	‘,’	vector-argument	‘)’	|	parameter	|	reference	. 
proj-vector-function	=	‘proj’	‘(’	(vector-argument	‘,’	vector-argument	‘,’	vector-argument	|	three-
vector-argument)	‘)’	. 
three-vector-argument	=	‘(‘	vector-argument	‘,’	vector-argument	‘,’	vector-argument	‘)’	|	parameter	
|	reference	. 
scale-vector-function	=	‘vectorscale’		‘(’	(vector-argument	‘,’	numeric-expression	|	vector-number-
argument)	‘)’	. 
vector-number-argument	=	‘(‘	vector-argument	‘,’	numeric-expression	‘)’	|	parameter	|	reference	. 
vector-function	=	(‘mag’	|	‘angle’)	(‘(’	vector-argument	‘,’	vector-argument	‘)’	|	‘(’	two-vector-
argument	‘)’)	. 
round-function	=	‘round’	‘(‘	(numeric-expression	|	vector-argument	‘)’	. 
random-function	=	‘random’	‘(’	vector-argument	‘)’	.

Example	function-returns-number: 
length(“room”)

Example	function-returns-tuple: 
adjacencies(a4, a5 a6)

55

reference	=	reference-to-lhs	|	reference-to-rhs	. 
reference-to-lhs	=	[‘lhs.’]	reference-designator	‘.’	(‘value’	|	parameter	|	property)	[‘:’	filter]	. 
reference-to-rhs	=	‘rhs.’	reference-designator	‘.’	property	[‘:’	filter]	. 
reference-designator	=	identifier	. 
property	=	identifier	. 
filter	=	reference-designator	‘.’	property	filter-operator	(number	|	vector	|	string)	. 
filter-operator	=	‘=’	|	‘<>’	|	‘<=’	|	‘>=’	. 
vector	=	[rational]	‘(’	rational	‘,’	rational	‘,’	rational	‘)’	. 
rational	=	[‘–’]	digit-sequence	[‘/’	digit-sequence]	.

Example	reference-to-lhs: 
indices.value

Example	reference-to-rhs: 
rhs.sections.radius:labels.label=“S”

56

Appendix B. Description functions

Numerical functions

*atan	versus	atan2:

− atan	takes	1	input	and	returns	a	result	from	quadrants	1	and	4

− atan2	takes	2	inputs	(u,	v)	that	specify	a	ratio	u/v	and	returns	a	result	from	all	quadrants

For	example:

Text functions

function input output

abs 1	number The	absolute	value	of	the	number

sqrt 1	number The	square	root	of	the	number

sin 1	number The	sine	value	of	the	angle	(in	radians)

cos 1	number The	cosine	value	of	the	angle	(in	radians)

tan 1	number The	tangent	value	of	the	angle	(in	radians)

asin 1	number The	inverse	sine	of	the	number	(in	radians)

acos 1	number The	inverse	cosine	of	the	number	(in	radians)

atan* 1	number The		inverse	tangent	of	the	number	(in	radians)

atan2* 2	numbers The	inverse	tangent	of	the	ratio	(in	radians)

todegree 1	number The	value	converted	from	radians	in	degrees

toradian 1	number The	value	converted	from	degrees	in	radians

round 1	number The	value	rounded	to	the	nearest	integer

u v x	=	u/v atan(x) atan2(u,v)

2 1 2 1.1071487177940904 1.1071487177940904

-2 1 -2 -1.1071487177940904 -1.1071487177940904

2 -1 -2 -1.1071487177940904 2.0344439357957027

-2 -1 2 1.1071487177940904 -	2.0344439357957027

function input output

length 1	string The	length	of	the	string

lef 1	string	and	1	number The	left	substring	of	the	specified	length

right 1	string	and	1	number The	right	substring	of	the	specified	length

57

Tuple functions

function input output

length 1	tuple The	number	of	elements	in	the	tuple

first 1	tuple The	first	element	of	the	tuple

last 1	tuple The	last	element	of	the	tuple

item 1	tuple	and	1	number The	indexed	element	of	the	tuple

min 1	tuple The	element	of	the	tuple	with	minimum	value

max 1	tuple The	element	of	the	tuple	with	maximum	value

unique 1	tuple A	tuple	of	only	unique	elements

pairwise 1	tuple A	tuple	of	pairs	extracting	consecutive	elements	
pairwise	from	the	operand	tuple; 
e.g.,	(a,	b,	c,	d)	->	((a,	b),	(c,	d))

segments 1	tuple A	tuple	of	overlapping	pairs	extracting	
consecutive	elements	from	the	operand	tuple; 
e.g.,	(a,	b,	c,	d)	->	((a,	b),	(b,	c),	(c,	d))

loops 1	tuple A	tuple	of	tuples	identifying	loops	in	the	operand	
tuple;	e.g.,	(a,	b,	c,	d,	a,	e,	f,	c)	->	((a,	b,	c,	d),	(c,	d,	
a,	e,	f)

adjacencies 2	tuples:	a	tuple	of	
“enclosures”	and	a	tuple	of	
“connecting”	elements

A	tuple	of	tuples	representing	an	adjacency	
matrix

random 1	tuple:	either	2	or	3	
numbers

A	random	number	within	the	range	specified	by	
the	first	two	operands;	the	optional	third	
operand	is	considered	as	a	step	value	for	the	
random	number	generation

58

Vector (tuple) functions

*A	vector	tuple	is	a	tuple	of	two	or	three	numbers;	any	function	accepting	(one	or	more)	
vector	tuples	will	also	accept	a	single	tuple	collecting	all	operands

function input output

round 1	vector	tuple* A	vector	tuple	with	each	value	rounded	to	the	
nearest	integer

mag 1	or	2	vector	tuples* The	distance	between	the	two	vectors	or	the	
magnitude	or	length	of	a	single	vector

angle 2	vector	tuples* The	angle	between	the	two	vectors	
(counterclockwise	angle	from	the	first	to	the	
second	vector)	(in	radians)

proj 3	vector	tuples*:	a	direction	
vector,	a	root	vector	and	a	
position	vector

A	vector	tuple	representing	the	projection	of	the	
position	vector	on	the	line	specified	by	the	
direction	vector	and	root	vector

vectoradd 2	vector	tuples* A	vector	tuple	representing	the	sum	of	the	two	
vectors

vectorsubtract 2	vector	tuples* A	vector	tuple	representing	the	difference	of	the	
two	vectors

vectorscale 1	vector	tuple*	and	1	number A	vector	tuple	representing	the	product	of	the	
vector	and	the	scalar

dotproduct 2	vector	tuples* The	number	resulting	from	the	dot	product	of	the	
two	vectors

crossproduct 2	vector	tuples* A	vector	tuple	representing	the	cross	product	of	
the	two	vectors

59

Appendix C: A formal notation for flow descriptions

We	adapt	the	notation	for	regular	expressions	as	a	formal	notation	for	flow	descriptions.	
Regular	expressions	are	patterns	that	are	used	to	match	strings	by	string	searching	
algorithms.	Regular	expressions	are	composed	of	tokens	that	are	combined	in	a	prescribed	
order,	with	some	variation	built	into	the	expression,	in	order	to	match	a	goal	string.	Similarly,	
flows	are	composed	of	shape	or	compound	rules	that	are	combined	in	a	prescribed	order,	
with	some	algorithmic	variation,	in	order	to	produce	a	valid	final	shape.

Within	the	table	below	we	use	the	term	sub-flow	to	denote	each	and	every	element	within	a	
flow	or	sub-flow.	That	is,	a	sub-flow	may	be	a	rule,	a	flow	or	a	flow	structure	(sequence,	
disjunction	or	negation).	A	rule	is	represented	by	its	name,	so	is	a	flow.	A	flow	structure	is	
represented	either	as	a	sequence	of	sub-flows	within	parentheses,	as	a	disjunction	of	sub-
flows	within	square	brackets,	or	as	a	sub-flow	preceded	by	the	negation	symbol	‘!’.

Metacharacter Explanation

␣ A	space	separates	two	sub-flows	in	a	sequence	or	disjunction.	In	a	sequence,	if	
either	sub-flow	fails	to	apply,	the	entire	sequence	fails	to	apply.	In	a	
disjunction,	only	one	sub-flow	needs	to	succeed	for	the	disjunction	to	
succeed.

(…) Parentheses	enclose	a	sequence	of	sub-flows.	Sub-flows	are	attempted	to	be	
applied	one	after	the	other,	each	time	on	the	result	of	the	previous	
application,	in	the	order	specified.	If	one	of	the	sub-flows	fails,	backtracking	
will	occur.

[…] Square	brackets	enclose	a	disjunction	(selection)	of	alternative	sub-flows.	
Alternatives	are	attempted	to	be	applied	in	the	order	specified.	As	soon	as	one	
application	succeeds,	subsequent	sub-flows	are	skipped.	If	no	alternative	
applies,	backtracking	will	occur.

[*…] Square	brackets	enclose	a	disjunction	(selection)	of	alternative	sub-flows.	
When	the	first	character	within	square	brackets	is	an	asterisk,	the	alternatives	
are	attempted	to	be	applied	in	a	random	order	instead	of	in	the	order	
specified.	As	soon	as	one	application	succeeds,	subsequent	sub-flows	are	
skipped.	If	no	alternative	applies,	backtracking	will	occur.

! Success	and	failure	of	the	succeeding	sub-flow	are	inverted.	If	the	sub-flow	
fails,	the	application	succeeds,	whereas	if	the	sub-flow	succeeds,	backtracking	
occurs.

? The	preceding	sub-flow	may	apply	zero	or	one	time.	A	single	application	is	
attempted.	Success	or	failure,	no	backtracking	occurs,	unless	backtracking	
arrives	from	a	later	point	to	this	sub-flow	and	all	alternatives	within	this	sub-
flow	have	been	exhausted.

* The	preceding	sub-flow	may	apply	zero,	one	or	more	times.	The	iteration	
proceeds	until	the	sub-flow	fails	to	apply.	No	backtracking	occurs,	unless	
backtracking	arrives	from	a	later	point	to	this	sub-flow	and	all	alternatives	
within	this	iterative	sub-flow	have	been	exhausted.

60

+ The	preceding	sub-flow	may	apply	one	or	more	times.	The	iteration	proceeds	
until	the	sub-flow	fails	to	apply.	Backtracking	only	occurs	if	the	sub-flow	fails	at	
the	very	first	time,	unless	backtracking	arrives	from	a	later	point	to	this	sub-
flow	and	all	alternatives	within	this	iterative	sub-flow	have	been	exhausted.

{n} he	preceding	sub-flow	may	apply	exactly	n	times.	The	iteration	proceeds	until	
n	applications	or	until	the	sub-flow	fails	to	apply.	Backtracking	occurs	if	fewer	
than	n	applications	succeed	or,	upon	backtracking	from	a	later	point	to	this	
sub-flow,	if	all	alternatives	within	this	iterative	sub-flow	have	been	exhausted.

{n,} The	preceding	sub-flow	may	apply	n	or	more	times.	The	iteration	proceeds	
until	the	sub-flow	fails	to	apply.	Backtracking	occurs	if	fewer	than	n	
applications	succeed	or,	upon	backtracking	from	a	later	point	to	this	sub-flow,	
if	all	alternatives	within	this	iterative	sub-flow	have	been	exhausted.

{n,m} The	preceding	sub-flow	may	apply	any	number	of	times	between	n	and	m.	The	
iteration	proceeds	until	m	consecutive	applications	or	until	the	sub-flow	fails	
to	apply.	Backtracking	occurs	if	fewer	than	n	applications	succeed	or,	upon	
backtracking	from	a	later	point	to	this	sub-flow,	if	all	alternatives	within	this	
iterative	sub-flow	have	been	exhausted.

?+ The	preceding	sub-flow	may	apply	zero	or	one	time.	No	backtracking	occurs.	
When	backtracking	arrives	from	a	later	point	to	this	sub-flow,	rather	than	
backtracking	within	the	sub-flow	or	its	iteration,	backjumping	takes	place	to	
the	point	before	this	sub-flow.

*+ The	preceding	sub-flow	may	apply	zero,	one	or	more	times.	The	iteration	
proceeds	until	the	sub-flow	fails	to	apply.	No	backtracking	occurs.	When	
backtracking	arrives	from	a	later	point	to	this	sub-flow,	rather	than	
backtracking	within	the	sub-flow	or	its	iteration,	backjumping	takes	place	to	
the	point	before	this	sub-flow.

++ The	preceding	sub-flow	may	apply	one	or	more	times.	The	iteration	proceeds	
until	the	sub-flow	fails	to	apply.	Backtracking	only	occurs	if	the	sub-flow	fails	at	
the	very	first	time.	When	backtracking	arrives	from	a	later	point	to	this	sub-
flow,	rather	than	backtracking	within	the	sub-flow	or	its	iteration,	backjumping	
takes	place	to	the	point	before	this	sub-flow.

{n}+ The	preceding	sub-flow	may	apply	exactly	n	times.	The	iteration	proceeds	until	
n	applications	or	until	the	sub-flow	fails	to	apply.	Backtracking	occurs	if	fewer	
than	n	applications	succeed.	When	backtracking	arrives	from	a	later	point	to	
this	sub-flow,	rather	than	backtracking	within	the	sub-flow	or	its	iteration,	
backjumping	takes	place	to	the	point	before	this	sub-flow.

{n,}+ The	preceding	sub-flow	may	apply	n	or	more	times.	The	iteration	proceeds	
until	the	sub-flow	fails	to	apply.	Backtracking	occurs	if	fewer	than	n	
applications	succeed.	When	backtracking	arrives	from	a	later	point	to	this	sub-
flow,	rather	than	backtracking	within	the	sub-flow	or	its	iteration,	backjumping	
takes	place	to	the	point	before	this	sub-flow.

61

{n,m}+ The	preceding	sub-flow	may	apply	any	number	of	times	between	n	and	m.	The	
iteration	proceeds	until	m	applications	or	until	the	sub-flow	fails	to	apply.	
Backtracking	occurs	if	fewer	than	n	applications	succeed.	When	backtracking	
arrives	from	a	later	point	to	this	sub-flow,	rather	than	backtracking	within	the	
sub-flow	or	its	iteration,	backjumping	takes	place	to	the	point	before	this	sub-
flow.

?? The	preceding	sub-flow	may	apply	zero	or	one	time.	Application	will	be	
skipped	at	first.	When	backtracking	arrives	from	a	later	point	to	this	sub-flow,	
application	will	be	tried.	Backtracking	occurs	if	all	alternatives	within	this	sub-
flow	have	been	exhausted.

*? The	preceding	sub-flow	may	apply	zero,	one	or	more	times.	Application	will	be	
skipped	at	first.	When	backtracking	arrives	from	a	later	point	to	this	sub-flow,	
application	be	tried	or,	eventually,	repeated.	Backtracking	occurs	if	all	
alternatives	within	this	iterative	sub-flow	have	been	exhausted.

+? The	preceding	sub-flow	may	apply	one	or	more	times.	A	single	application	will	
be	tried	at	first.	If	successful,	application	may	be	repeated,	but	only	upon	
backtracking	from	a	later	point	to	this	sub-flow.	Backtracking	occurs	if	a	single	
application	fails	or	all	alternatives	within	this	iterative	sub-flow	have	been	
exhausted.

{n}? The	preceding	sub-flow	may	apply	exactly	n	times.	The	iteration	proceeds	until	
n	applications	or	until	the	sub-flow	fails	to	apply.	Backtracking	occurs	if	fewer	
than	n	applications	succeed	or,	upon	backtracking	from	a	later	point	to	this	
sub-flow,	if	all	alternatives	within	this	iterative	sub-flow	have	been	exhausted.

{n,}? The	preceding	sub-flow	may	apply	n	or	more	times.	The	iteration	proceeds	
until	n	applications	or	until	the	sub-flow	fails	to	apply.	If	successful,	additional	
applications	may	be	tried,	but	only	upon	backtracking	from	a	later	point	to	this	
sub-flow.	Backtracking	occurs	if	fewer	than	n	applications	succeed	or	if	all	
alternatives	within	this	sub-flow	have	been	exhausted.

{n,m}? The	preceding	sub-flow	may	apply	any	number	of	times	between	n	and	m.	The	
iteration	proceeds	until	n	applications	or	until	the	sub-flow	fails	to	apply.	If	
successful,	additional	applications	may	be	tried,	but	only	upon	backtracking	
from	a	later	point	to	this	sub-flow,	and	never	more	than	m.	Backtracking	
occurs	if	fewer	than	n	applications	succeed	or	if	all	alternatives	within	this	sub-
flow	have	been	exhausted.

?* The	preceding	sub-flow	may	apply	zero	or	one	time.	The	one	application	may	
be	skipped	randomly.	Backtracking	only	occurs	if	all	alternatives	within	this	
sub-flow	have	been	exhausted.

** The	preceding	sub-flow	may	apply	zero,	one	or	more	times.	The	iteration	
proceeds	a	selected	random	number	of	times	or	until	the	sub-flow	fails	to	
apply.	When	backtracking	arrives	from	a	later	point	to	this	sub-flow,	fewer	or	
additional	applications	may	be	tried	as	well,	in	this	order.	Backtracking	occurs	
if	all	alternatives	within	this	iterative	sub-flow	have	been	exhausted.

62

+* The	preceding	sub-flow	may	apply	one	or	more	times.	The	iteration	proceeds	a	
selected	random	number	of	times	(at	least	one)	or	until	the	sub-flow	fails	to	
apply.	When	backtracking	arrives	from	a	later	point	to	this	sub-flow,	fewer	or	
additional	applications	may	be	tried	as	well,	in	this	order.	Backtracking	occurs	
if	a	single	application	fails	or	all	alternatives	within	this	iterative	sub-flow	have	
been	exhausted.

{n}* The	preceding	sub-flow	may	apply	exactly	n	times.	The	iteration	proceeds	until	
n	applications	or	until	the	sub-flow	fails	to	apply.	Backtracking	occurs	if	fewer	
than	n	applications	succeed	or,	upon	backtracking	from	a	later	point	to	this	
sub-flow,	if	all	alternatives	within	this	iterative	sub-flow	have	been	exhausted.

{n,}* The	preceding	sub-flow	may	apply	n	or	more	times.	The	iteration	proceeds	a	
selected	random	number	of	times	(at	least	n)	or	until	the	sub-flow	fails	to	
apply.	When	backtracking	arrives	from	a	later	point	to	this	sub-flow,	fewer	or	
additional	applications	may	be	tried	as	well,	in	this	order.	Backtracking	occurs	
if	fewer	than	n	applications	succeed	or	if	all	alternatives	within	this	iterative	
sub-flow	have	been	exhausted.

{n,m}* The	preceding	sub-flow	may	apply	any	number	of	times	between	n	and	m.	The	
iteration	proceeds	a	selected	random	number	of	times	(at	least	n	and	at	most	
m)	or	until	the	sub-flow	fails	to	apply.	When	backtracking	arrives	from	a	later	
point	to	this	sub-flow,	fewer	or	additional	applications	may	be	tried	as	well,	in	
this	order.	Backtracking	occurs	if	fewer	than	n	applications	succeed	or	if	all	
alternatives	within	this	iterative	sub-flow	have	been	exhausted.

63

Appendix D: FAQ

1. Setup	component	is	red	and	the	error	says	"Solution	exception:No	module	named	
mpmath"

This	is	an	installation	issue.	mpmath	is	a	python	module	that	is	referenced	by	the	plug-in.	
The	module	should	be	found	in	\Program	Files\Rhino	6\Plug-ins\IronPython\Lib\site-
packages	or	equivalent	on	your	computer.	Check	if	you	have	installed	it	by	copying	it	(and	all	
other	supporting	modules)	into	the	site-packages	folder.	Also,	check	the	Rhino	module	
search	paths	(Rhino	Python	Editor	window	Tools/Options).	You	must	add	the	site-packages	
folder	to	the	module	search	paths.

2. Setup	component	is	red	and	the	error	says	"Solution	exception:cannot	import	open	from	
io”

The	‘sortal’	library	contains	a	subfolder	named	‘io’.	The	Rhino	python	library	already	contains	
a	file	‘io.py’.	When	both	end	up	in	the	same	location,	Rhino	will	confuse	the	subfolder	
(module)	with	the	file.	It	is	important,	when	installing	'sortal'	into	C:\Program	Files\Rhino	
6\Plug-ins\IronPython\Lib,	to	copy	the	folder	'sortal'	here,	not	just	the	content	of	'sortal'.

3. I’m	applying	a	simple	parametric-associative	rule	to	all	the	faces	of	a	mesh,	but	some	
faces	are	not	matched

This	might	be	an	issue	of	precision	of	the	Rhino/GH	data.	The	SortalGI	engine	tries	to	address	
issues	of	precision	by	performing	approximate	coordinate	comparisons,	but	this	doesn’t	
always	solve	the	problem.	While	Rhino	adopts	12	significant	figures,	small	errors	may	occur	
when	entering	geometries,	even	when	using	the	snap	function.	Therefore,	the	default	
precision	adopted	by	the	SortalGI	engine	when	operating	within	Rhino	is	8	significant	figures.	
However,	the	SGI	Setup	component	sports	a	precision	input	that	you	can	adjust	the	value	of	
in	order	to	try	to	improve	upon	the	result.	Empirical	evidence	has	shown	that	a	precision	of	6	
to	8	significant	figures	tends	to	provide	the	best	results.	Even	then,	a	few	faces	might	still	
evade	the	matching	process,	especially	in	the	case	of	quadrilaterals,	or	higher	degree	
polygons.	An	additional	rule	applying	to	a	copy	of	one	of	these	faces	can	help	to	close	the	
gap.

4. I	get	a	warning	or	error	that	makes	no	sense	to	me.	What	can	I	do?

Please	recompute	the	Grasshopper	model	(F5)	or	reconnect	an	input	to	the	SGI	Setup	
component	to	force	this	component	to	recompute.	This	may	resolve	the	issue;	sometimes,	a	
disconnect	may	occur	between	the	Grasshopper	model	and	the	SortalGI	engine,	which	may	
result	in	a	warning	or	error	with	little	or	no	relation	to	the	actual	data.

5. Can	I	get	some	help?

You	can	post	a	message	on	the	SortalGI	forum	(http://sortal.org/feedback/)	or	e-mail	
stouffs@sortal.org

64

http://sortal.org/feedback/
mailto:stouffs@sortal.org

	1. About the SortalGI plug-in
	2. Installation and update
	3. Common terms
	4. Data types
	5. Starting on a SortalGI-based parametric model
	6. Creating a shape
	7. Manipulating a shape
	8. Creating a rule
	9. Applying a rule
	10. Creating and applying flows (composite rules)
	11. Specifying shape descriptions
	12. Specifying predicates
	13. Specifying directives
	Appendix A. A formal notation for shape descriptions
	Appendix B. Description functions
	Appendix C: A formal notation for flow descriptions
	Appendix D: FAQ

